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PREFACE

Since the first edition of this book was published in 1965, many changes have
taken place in process control. Nearly all undergraduate students in chemical
engineering are now required to take a course‘in process dynamics and control.
The purpose of this book is to take the student from the basic mathematics to a
variety of design applications in a clear, concise manner.

The most significant change since the first edition is the use of the digital
computer in complex problem-solving and in process control instrumentation.
However, the fundamentals of process control, which remain the same, must be
acquired before one can appreciate the advanced topics of control.

In its present form, this book represents a major revision of the first edition.
The material for this book evolved from courses taught at Purdue University and
Drexel University. The first 17 chapters on fundamentals are quite close to the
first 20 chapters of the first .edition.  The remaining 18 chapters contain many
new topics, which were considered very advanced when the first edition was
published.

A knowledge of calculus, unit operations, and complex numbers is presumed
on the part of the student. In certain later chapters, more advanced mathematical
preparation is useful. Some examples would include partial differential equations
in Chap. 21, linear algebra in Chaps. 28-30, and Fourier series in Chap. 33.

Analog computation and pneumatic controllers in the first edition have been
replaced by digital computation and microprocessor-based controllers in Chaps.
34 and 35. The student should be assigned material from these chapters at the
appropriate time in the development of the fundamentals. For example, obtaining
the transient response for a system containing a transport lag can be obtained easily
only with the use of computer simulation of transport lag. Some of the software
now available for solving control problems should be available to the student;
such software is described in Chap. 34. To understand the operation of modem
microprocessor-based controllers, the student should have hands-on experience
with these instruments in a laboratory.

XV



Xvi PREFACE

Chapter 1 is intended to meet one of the problems consistently faced in pre-
senting this material to chemical engineering students, that is, one of perspective.
The methods of analysis used in the control area are so different from the previous
experiences of students that the material comes to be regarded as a sequence of
special mathematical techniques, rather than an integrated design approach to a
class of real and practically significant industrial problems. Therefore, this chap-
ter presents an overall, albeit superficial, look at a simple control-system design
problem. The body of the text covers the following topics:

1 . Laplace  transforms, Chaps 2 to 4.
2. Transfer functions and responses of open-loop systems, Chaps. 5 to 8.
3. Basic techniques of closed-loop control, Chaps. 9 to 13.
4. Stability, Chap. 14.
5 . Root-locus methods, Chap. 15.
6. Frequency-response methods and design, Chaps. 16 and 17.
7. Advanced control strategies (cascade, feedforward, Smith predictor, internal

model control), Chap. 18.
8. Controller tuning and process identification, Chap. 19.
9. Control valves, Chap. 20.

10. Advanced dynamics, Chap. 21.process
11. Sampled-data control, Chaps. 22 to 27.
12. State-space methods and multivariable control, Chaps. 28 to 30.
13. Nonlinear control, Chaps. 31 to 33.
14. Digital computer simulation, Chap. 34.
15. Microprocessor-based controllers, Chap. 35.

It has been my experience that the book covers sufficient material for a one-
semester (15-week) undergraduate course and an elective undergraduate course or
part of a graduate course. In a lecture course meeting three hours per week during
a lo-week term, I have covered the following Chapters: 1 to 10, 12 to 14, 16,
17, 20, 34, and 35.

After the first 14 chapters, the instructor may select the remaining chapters
to fit a course of particular duration and scope. The chapters on the more advanced
topics are written in a logical order; however, some can be skipped without creating
a gap in understanding.

I gratefully acknowledge the support and encouragement of the Drexel Uni-
versity Department of Chemical Engineering for fostering the evolution of this
text in its curriculum and for providing clerical staff and supplies for several edi-
tions of class notes. I want to acknowledge Dr. Lowell B. Koppel’s important
contribution as co-author of the first edition of this book. I also want to thank
my colleague, Dr. Rajakannu Mutharasan, for his most helpful discussions and
suggestions and for his sharing of some of the new problems. For her assistance
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in typing, I want to thank Dorothy Porter. Helpful suggestions were also provided
by Drexel students, in particular Russell Anderson, Joseph Hahn, and Barbara
Hayden. I also want to thank my wife Effie for helping me check the page proofs
by reading to me the manuscript, the subject matter of which is far removed from
her specialty of Greek and Latin.

McGraw-Hill and I would like to thank Ali Cinar, Illinois Institute of Tech-
nology; Joshua S. Dranoff, Northwestern University; H. R. Heichelheim, Texas
Tech University; and James H. McMicking, Wayne State University, for their
many helpful comments and suggestions in reviewing this second edition.

Donald R. Coughanowr



CHAPTER

1
ANINTRODUCTORY

EXAMPLE

In this chapter we consider an illustrative example of a control system. The goal
is to introduce some of the basic principles and problems involved in process
control and to give the reader an early look at an overall problem typical of those
we shall face in later chapters.

The System
A liquid stream at temperature Ti  is available at a constant flow rate of w in units
of mass per time. It is desired to heat this stream to a higher temperature TR.  The
proposed heating system is shown in Fig. 1.1. The fluid flows into a well-agitated
tank equipped with a heating device. It is assumed that the agitation is sufficient
to ensure that all fluid in the tank will be at the same temperature, T. Heated fluid
is removed from the bottom of the tank at the flow rate w as the product of this
heating process. Under these conditions, the mass of fluid retained in the tank
remains constant in time, and the temperature of the effluent fluid is the same as
that of the fluid in the tank. For a satisfactory design this temperature must be
TR.  The specific heat of the fluid C is assumed to be constant, independent of
temperature.

Steady-State Design
A process is said to be at steady state when none of the variables are changing with
time. At the desired steady state, an energy balance around the heating process
may be written as follows:

qs  = wC(Ts  - Ti,) (1.1)
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FIGURE l-l
Agitated heating tank.

where qS is the heat input to the tank and the subscript s is added to indicate a
steady-state design value. Thus, for example, Ti,  is the normally anticipated inlet
temperature to the tank. For a satisfactory design, the steady-state temperature of
the effluent stream T, must equal TR.  Hence

4s = wCV’R  - Ti,) (1.2)

However, it is clear from the physical situation that, if the heater is set to deliver
only the constant input qs , then if process conditions change, the tank temperature
will also change from TR.  A typical process condition that may change is the inlet
temperature, Ti  .

An obvious solution to the problem is to design the heater so that its energy
input may be varied as required to maintain T at or near TR.

Process Control

It is necessary to decide how much the heat input q is to be changed from qs
to correct any deviations of T from TR.  One solution would be to hire a process
operator, who would be responsible for controlling the heating process. The op-
erator would observe the temperature in the tank, presumably with a measuring
instrument such as a thermocouple or thermometer, and compare this temperature
with TR. If T were less than TR, he would increase the heat input and vice versa.
As he became experienced at this task, he would learn just how much to change
q for each situation. However, this relatively simple task can be easily and less
expensively performed by a machine. The use of machines for this and similar
purposes is known as automatic process control.

The Unsteady State

If a machine is to be used to control the process, it is necessary to decide in
advance precisely what changes are to be made in the heat input q for every

, possible situation that might occur. We cannot rely on the judgment of the machine
as we could on that of the operator. Machines do not think; they simply perform
a predetermined task in a predetermined manner.

To be able to make these control decisions in advance, we must know how the
tank temperature T changes in response to changes in Ti and q: This necessitates
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writing the unsteady-state, or transient, energy balance for the process. The input
and output terms in this balance are the same as those used in the steady-state
balance, Eq.  (1.1). In addition, there is a transient accumulation of energy in the
tank, which may be written

Accumulation = pVC $ energy units/time*

where p = fluid density
V = volume of fluid in the tank
t = independent variable, time

By the assumption of constant and equal inlet and outlet flow rates, the term pV,
which is the mass of fluid in the tank, is constant. Since

Accumulation = input - output

we have

PVC%  = wC(Ti-T)+q (1.3)

Equation (1.1) is the steady-state solution of IQ. (1.3),  obtained by setting the
derivative to zero. We shall make use of E$.  (1.3) presently.

Feedback Control
As discussed above, the controller is to do the same job that the human operator
was to do, except that the controller is told in advance exactly how to do it.
This means that the controller will use the existing values of T and TR  to adjust
the heat input according to a predetermined formula. Let the difference between
these temperatures, TR  - T, be called error. Clearly, the larger this error, the less
we are satisfied with the present state of affairs and vice versa. In fact, we are
completely satisfied only when the error is exactly zero.

Based on these considerations, it is natural to suggest that the controller
should change the heat input by an amount proportional to the error. Thus, a
plausible formula for the controller to follow is

q(t) =  wC(TR  - Ti,)  + K,(TR - T) (1.4)

where K, is a (positive) constant of proportionality. This is called proportional
control. In effect, the controller is instructed to maintain the heat input at the

*A rigorous application of the first law of thermodynamics would yield a term representing the
transient change of internal energy with temperatme  at constant pressure. Use of the specific heat,
at either constant pressue or constant volume, is an adequate engineering approximation for most
liquids and will be applied extensively in this text.
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steady-state design value qs as long as T is equal to TR  [compare Eq. (1.2)],  i.e.,
as long as the error is zero. If T deviates from TR,  causing an error, the controller
is to use the magnitude of the error  to change the heat input proportionally.
(Readers should satisfy themselves that this change is in the right direction.) We
shall reserve the right to vary the parameter K, to suit our needs. This degree of
freedom forms a part of our instructions to the controller.

The concept of using information about the deviation of the system from its
desired state to control the system is calledfeedback  control. Information about the
state of the system is “fed back” to a controller, which utilizes this information
to change the system in some way. In the present case, the information is the
temperature T and the change is made in q. When the term wC(TR  -  Ti,)  is
abbreviated to qs,  Ftq.  (1.4) becomes

4 =  4s  +  Kc(TR - T) (1.h)

Transient Responses
Substituting Eq.  (l&z)  into IQ. (1.3) and rearranging, we have

dT
71x  + (1.5)

where

PV71 = -
W

The term ~1 has the dimensions of time and is known as the time constant of the
tank. We shall study the significance of the time constant in more detail in Chap.
5. At present, it suffices to note that it is the time required to fill the tank at the
flow rate, w. Ti is the inlet temperature, which we have assumed is a function
of time. Its normal value is Ti,,  and qs is based on this value. Equation (1.5)
describes the way in which the tank temperature  changes in response to changes
in Ti and 4.

Suppose that the process is pnxeeding  smoothly at steady-state design con-
ditions. At a time arbitrarily called zero, the inlet temperature, which was at TiS,
suddenly undergoes a permanent rise of a few degrees to a new value Ti, + ATi, as
shown in Fig. 1.2. For mathematical convenience, this disturbance is idealized to

Time + FIGURE 1-2
Inlet  temperature  versus time.
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Ti,+ATI

t r
Ti q

0 Time- FIGURE 1-3
Idealized inlet temperahue  versus time.

the form shown in Fig. 1.3. The equation for the function Ti(t) of Fig. 1.3
is

t<O
t>O (1.6)

This type of function, known as a step function, is used extensively in the study
of transient response because of the simplicity of Eq. (1.6). The justification
for use of the step change is that the response of T to this function will not
differ significantly from the response to the more realistic disturbance depicted in
Fig. 1.2.

To determine the response of T to a step change in Ti, it is necessary to
substitute Eq. (1.6) into (1.5) and solve the resulting differential equation for
T(t). Since the process is at steady state at (and before) time zero, the initial
condition is

T(0) = TR (1.7)
The reader can easily verify (and should do so) that the solution to Eqs.

(1.5),  (1.6),  and (1.7) is

T=TR+ !K,-&i)  + 1 (1  - ,-wwC+l)rh) (1.8)

This system response, or tank temperature versus time, to a step change in Ti is
shown in Fig. 1.4 for various values of the adjustable control parameter K,.  The
reader should compare these curves with IQ. (1.8),  particularly in respect to the
relative positions of the curves at the new steady states.

It may be seen that the higher K, is made, the “better” will be the con-
trol, in the sense that the new steady-state value of Twill be closer to TR.  At first

G-0

2:s

-v------w

FIGURE  l-4
0 Time--t Tank temperature  versus time for various values of

Kc.
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glance, it would appear desirable to make K, as large as possible, but a little
reflection will show that large values of K, are  likely to cause other problems.
For example, note that  we have considered only one type of disturbance ip Ti.
Another possible behavior of Ti  with time is shown in Fig. 1.5. Here, Ti  is
fluctuating about its steady-state value. A typical response of T to this type of
disturbance in Ti,  without control action, is shown in Fig. 1.6. The fluctuations
in Ti  are delayed and “smoothed” by the large volume of liquid in the tank, so
that T does not fluctuate as much as Ti.  Nevertheless, it should be clear from
E@. (1.4~)  and Fig. 1.6 that a control system with a high value of K, will have
a tendency to overadjust. In other words, it will be too sensitive to disturbances
that would tend to disappear in time even without control action. This will have
the undesirable effect of amplifying the effects of these disturbances and causing
excessive wear on the control system.

The dilemma may be summarized as follows: In order to obtain accurate
control of T,  despite “permanent” changes in Ti,  we must make KC larger (see Fig.
1.4). However, as K, is increased, the system becomes oversensitive to spurious
fluctuations in Tie  (These fluctuations, as depicted in Fig. 1.5, are  called noise.)
The reader is cautioned that there are  additional effects produced by changing
K, that have not been discussed here for the sake of brevity, but which may be
even more important. This will be one of the major subjects of interest  in later
chapters. The two effects mentioned PIE  sufficient to illustrate the problem.

Integral Control
A considerable improvement may be obtained over the proportional control sys-
tem by adding integral control. The controller is now instructed to change the
heat input by an additional amount proportional to the time integral of the error.
Quantitatively, the heat input function is to follow the relation

T ,-kiz- T-l4The response, without control action, to a fluctuating
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!i FIGURE 1-7

0
Tank  temperature versus time: step input for

Time - proportional and integral control.

I t
q(t) = qs  + K,-(TR  - T) + KR (TR  - T)dt

0

This control system is to have two adjustable parameters, K, and KR.
The response of the tank temperature T to a step change in Ti, using a

control function described by (1.9),  may be derived by solution of Eqs.  (1.3),
(1.6),  (1.7),  and (1.9). Curves representing this response, which the reader is
asked to accept, am given for various values of KR at a fixed value of Kc  in Fig.
1.7. The value of K,  is a moderate one, and it may be seen that for all three  values
of KR  the steady-state temperature is TR;  that is, the steady-state error Z’S  zero.
From this standpoint, the response is clearly superior to that of the system with
proportional control only. It may be shown that the steady-state error is zero for
all KR  > 0, thus eliminating the necessity for high values of Kc. (In subsequent
chapters, methods will be given for rapidly constructing response curves such as
those of Fig. 1.7.)

It is clear from Fig. 1.7 that the responses for KR  = K,Q  and KR  = KR,
are better than the one for KR  = KR~  because T returns to TR  faster, but it may be
difficult to choose between KR~,  and KR,  . The response for K,Q  “settles down”
sooner, but it also has a higher maximum error. The choice might depend on the
particular use for the heated stream. This and related questions form the study of
optimal control systems. This important subject is mentioned in this book more
to point out the existence of the problem than to solve it.

To recapitulate, the curves of Fig. 1.7 give the transient behavior of the
tank temperature in response to a step change in Ti  when the tank temperature is
controlled according to Eq. (1.9). They show that the addition of integral control
in this case eliminates steady-state error and allows use of moderate values of Kc.

More Complications
At this point, it would appear that the problem has been solved in some sense. A
little further probing will shatter this illusion.

It has been assumed in writing Eqs. (1.4~)  and (1.9) that the controller re-
ceives instantaneous information about the tank temperature, T. From a physical
standpoint, some measuring device such as a thermocouple will be required- to
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measure this temperature. The temperature of a thermocouple inserted in the tank
may or may not be the same as the temperature of the fluid in the tank. This
can be demonstrated by writing the energy balance for a typical thermocouple
installation, such as the one depicted in Fig. 1.8. Assuming that the junction is
at a uniform temperature T,,,  and neglecting any conduction of heat along the
thermocouple lead wires, the net rate of input of energy to the thermocouple
junction is

hA(T - T,)

where h = heat-transfer coefficient between fluid and junction
A = area of junction

The rate of accumulation of energy in the junction is

where C, = specific heat of junction
m = mass of junction

Combining these in an energy balance,

dTm
Q d t

-+T,,,=T

where 72  = mC,lhA  is the time constant of the thermocouple. Thus, changes in
T are not instantaneously reproduced in T,,,  . A step change in T causes a response
in T, similar to the curve of Fig. 1.4 for K, = 0 [see IQ. (1.5)].  This is
analogous to the case of placing a mercury thermometer in a beaker of hot water.
The thermometer does not instantaneously rise to the water temperature. Rather,
it rises in the manner described.

Since the controller will receive values of T,,,  (possibly in the form of a
thermoelectric voltage) and not values of T, Eq. (1.9) must be rewritten as

I

1
4 = 4s +KATR  - TA+KR V~-Tddt (1.9a)

0

The apparent error is given by (TR  - T,),  and it is this quantity upon which the
controller acts, rather than the true error (TR  - T). The response of T to a step

,Thermccouule’iuidon,

FlGURE l-8
Thermocouple installation for heated-tank system.
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1 T= FIGuRE1-9
Tank temperatmt  versus time with measuring lag.

change in Z’i  is now derived by simultaneous solution of ( 1.3),  (1.6),  (1.9a), and
( 1. lo), with initial conditions

T(0) = T,,,(O)  = TR (1.11)

Equation (1.11) implies that, at time zero, the system has been at rest at TR  for
some time, so that the thermocouple junction is at the same temperature as the
tank.

The solution to this system of equations is represented in Fig. 1.9 for a
particular set of values of K, and KR. For this set of values, the effect of the
thermocouple delay in transmission of the temperature to the controller is primarily
to make the response somewhat more oscillatory than that shown in Fig. 1.7 for the
same value of KR.  However, if KR is increased somewhat over the value used in
Fig. 1.9, the response is that shown in Fig. 1.10. The tank temperature oscillates
with increasing amplitude and will continue to do so until the physical limitations
of the heating system are reached. The control system has actually caused a
deterioration in performance. Surely, the uncontrolled response for Kc = 0 in
Fig. 1.4 is to be preferred over the unstable response of Fig. 1.10.

This problem of stability of response will be one of our major concerns
in this text for obvious reasons. At present, it is sufficient to note that extreme
care must be exercised in specifying control systems. In the case considered, the
proportional and integral control mechanism ‘described by Eq. (1.9~)  will per-
form satisfactorily if KR is kept lower than some particular value, as illustrated in
Figs. 1.9 and 1.10. However, it is not difficult to construct examples of systems
for which the addition of any amount of integral control will cause an unstable
response. Since integral control usually has the desirable feature of eliminating
steady-state error, as it did in Fig. 1.7, it is extremely important that we develop

T,

t
I

T

0 FlGURE l-10
Time- Zmk  te.mpexatme  versus time for increased KR.
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1
TR’ Comparator - E r r o r N  Controller ~tis~r%  Heater ’ l

Heat
T a n k  -

A - input -

FIGURE l-11

Thermocoup le  4  T

Block diagram for heated-tank system.

means for predicting the occurrence of unstable response in the design of any
control system.

Block Diagram
A good overall picture of the relationships among variables in the heated-tank
control system may be obtained by preparing a block diagram. This diagram,
shown in Fig. 1.11, indicates the flow of information around the control system
and the function of each part of the system. Much more will be said about blo‘ck
diagrams in Chap. 9, but the reader can undoubtedly form a good intuitive notion
about them by comparing Fig. 1.11 with the physical description of the process
given in the previous paragraphs. Particularly significant is the fact that each
component of the system is represented by a block, with little regard for the
actual physical characteristics of the represented component (e.g., the tank or
controller). The major interest is in (1) the relationship between the signals entering
and leaving the block and (2) the manner in which information flows around the
system. For example, TR  and T,,,  enter the comparator. Their difference, the error,
leaves the comparator and enters the controller.

SUMMARY
We have had an overall look at a typical control problem and some of its ramifi-
cations. At present, the reader has been asked to accept the mathematical results
on faith and to concentrate on obtaining a physical understanding of the transient
behavior of the heated tank. We shall in the forthcoming chapters develop tools
for determining the response of such systems. As this new material is presented,
the reader may find it helpful to refer back to this chapter in order to place the
material in proper perspective to the overall control problem.

PROBLEMS
1.1. Draw a block diagram for the control system generated when a human being sfeers

an automobile.





THELAPLACE
TRANSFORM

11



CHAPTER

THELAPLACE
TRANSFORM

Even from our brief look at the control problem of Chap. 1, it is evident that
solution of differential equations will be one of our major tasks. The Laplace
transform method provides an efficient way to solve linear, ordinary, differen-
tial equations with constant coefficients. Because an important class of control
problems reduces to the solution of such equations, the next three chapters are
devoted to a study of Laplace  transforms before resuming our investigation of
control problems.

Definition of the ‘Ikansform

The Laplace  transform of a function f(t) is defined to be f(s) according to the
equation

f ( s )  =
I
osf(t)e~~‘dr

We often abbreviate this notationally to

f(s)  = LCfwl

(2.1)

where the operator L is defined by Eq. (2.1). *

*Many texts adopt some notational convention, such as capitalizing the transformed function as F(s)
or putting a bar over it as T(S).  In general, the appearance of the variable s as the argument or in
an equation involving f is sufficient to signify that the function has been transformed, and hence any
such notation will seldom be required in this book.

13
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Example 2.1. Find the Laplace  transform of the function

f(t) = 1

According to Eq. (2. l),

f(s) = J-ow(l)e-“‘df  =  - e-S’
t=cu

S t=O
= f

Thus,

L(1) = f

There am  several facts worth noting at this point:

1. The Laplace  transform f(s) contains no information about the behavior of f(t)
for t < 0. This is not a limitation for control system study because t will
represent the time variable and we shall be interested in the behavior of systems
only for positive time. In fact, the variables and systems are usually defined so
that f (t) = 0 for t < 0. This will become clearer as we study specific examples.

2. Since the Laplace  transform is defined in Eq. (2.1) by an improper integral,
it will not exist for every function f(t). A rigorous definition of the class of
functions possessing Laplace  transforms is beyond the scope of this book, but
readers will note that every function of interest to us does satisfy the requirements
for possession of a transform.*

3. The Laplace  transform is linear. In mathematical notation, this  means:

~bfl(~)  + bf2Wl  = 4fl(O) + mf2Wl

where a and b are constants, and f 1  and f2 am  two functions of t.

Proof. Using the definition,

Uafl(t)  + bfdt))  = lom[aflO) + bf2(~)le-s’d~

=a Iomfl(r)e-stdt  + blom  f2(t)e-S’dr

= &flW) + bUM)l

4. The Laplace  transform operator transforms a function of the variable I to a func-
tion of the variable s. The I variable is eliminated by the  integration.

Tkansforms  of Simple Fhnctions
We now proceed to derive the transforms of some simple and useful functions.

*For details on this and related mathematical topics, see Churchill (1972).
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1. The step function

.m = i y t<O
t>O

This important function is known a$ the unit-step function and will henceforth
be denoted by u(t). From Example 2.1, it is clear that

L{u(t)} = f

As expected, the behavior of the function for t < 0 has no effect on its
Laplace  transform. Note that as a consequence of linearity, the transform of
any constant A, that is, f(t)  = Au(t), is just f(s) = A/s.

2. The exponential function

f(t) = ._“,,
I

t<O

t>O I
= u(t)e-“’

where u(t)  is the unit-step function. Again proceeding according to definition,

I

m m
L{u(t)een’} =

1

0
e-(s+a)rdt  = _ Ae-(s+a)t -

0 S+U

provided that s + a > 0, that is, s > -a. In this case, the convergence of
the integral depends on a suitable choice of S. In case s is a complex number,
it may be shown that this condition becomes

Re(s) > - a

For problems of interest to us it will always be possible to choose s so that these
conditions are satisfied, and the reader uninterested in mathematical niceties
can ignore this point.

3. The ramp function

Integration by parts yields

L{tu(t)}  =  -eesf f. +  f
i ii

cc

s 0

= f

4. The sine function

= u(t)sin  kt

L{u(t)sin  k t}  = sin kt ems’dt
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TABLE 2.1

FilDCtiOIl Graph ‘llxmfbrm

1
u(t) -F

ld-
S

W)

Pu(t)

e-=“u(t)

sin kt u(t)

-4
4

1
4

1

7

?I!
sn+l

1
s+a

n!
(s + a)“+l

k

s2 + k2
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TABLE 2.1 (Continued)

lhlCtiOll Graph l.hmshm

coskt  u(t)

sinhkt  u(t)

coshkr u(r)

e-=’  Sink? u(r)

e- cos kt  u(t)

*

S(f),  unit  impulse

-k-1

Area =  1

+-

s
s2 + k2

k

s2  - k2

S

s2 - k2

k

(s + a)? + k2

s+a
(s + a)2  + k2

1

I
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Integrating by parts,

L{u(t)sin
-e-St

01

k t }  = -(s  sin kt + k cos kt)
s* + k* 0

k=-
s* + k*

In a like manner, the transforms of other simple functions may be derived.
Table 2.1 is a summary of transforms that will be of use to us. Those which have
not been derived here can be easily established by direct integration, except for
the transform of 6(t),  which will be discussed in detail in Chap. 4.

Transforms  of Derivatives
At this point, the reader may wonder what has been gained by introduction of the
Laplace  transform. The transform merely changes a function of t into a function
of S. The functions of s look no simpler than those of t and, as in the case
of A --,  A/s,  may actually be more complex. In the next few paragraphs, the
motivation will become clear. It will be shown that the Laplace  transform has the
remarkable property of transforming the operation of differentiation with respect
to t to that of multiplication by s. Thus, we claim that

= sf(s)  - f(O) (2.2)

where

f(s)  = u.f(t)1

and f(0) is f(t)  evaluated at t = 0. [It is essential not to interpret f(0) as f(s)
with s = 0. This will be clear from the following proof.]*

Proof.

To integrate this by parts, let

u = e-S’ dv = dfdt
d t

Then

du = --sems’dt v = f(t)

* If f(t) is discontinuous at t = 0, f(0)  should he evaluated at t = O’,  i.e., just to the right of the
origin. Since we shall seldom want to differentiate functions that are discontinuous at the origin, this
detail is not of great importance. However, the reader is cautioned to watch carefully for situations
in which such discontinuities occur.
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Since

we have
I

udv = uv-
I

vdu

= -f(O) + sf(s)

The salient feature of this transformation is that whereas the function of t
was to be differentiated with respect to t, the corresponding function of s is merely
multiplied by S. We shall find this feature to be extremely useful in the solution
of differential equations.

To find the transform of the second derivative we make use of the transform
of the first derivative twice, as follows:

L[$$  =L{-$(Z)}  = sL{$f]-~I,=,
= s[sf(s)  - ml - f’(O)
= s2f(s)  - sf(0)  - f’(0)

where we have abbreviated

df 0)
dt

= f'(O)
r=o

In a similar manner, the reader can easily establish by induction that repeated
application of Eq. (2.2) leads to

L d”f
I-1dt”

= s*f(s) - s*-lf(~)  _  p-*f(l)(o)  _  . . . _  sf(n-*)(o) - p-l)(o)

where f ’
t = 0. (‘)

(0) indicates the ith derivative of f(t)  with respect to t, evaluated for

Thus, the Laplace  transform may be seen to change the operation of differen-
tiation of the function to that of multiplication of the transform by S, the number
of multiplications corresponding to the number of differentiations. In addition,
some polynomial terms involving the initial values of f(t) and its first (n - 1)
derivatives are involved. In later applications we shall usually define our variables
so that these polynomial terms will vanish. Hence, they are of secondary concern
here.

Example 2.2. Find the Laplace  transform of the function n(t) that satisfies the
differential equation and initial conditions

dx  (0) d*x(O)  ox(O)  = dt = - =
dt*
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It is permissible mathematically to take the Laplace  transforms of both sides of
a differential equation and equate them, since equality of functions implies equality
of their transforms. Doing this, there is obtained

,3x(s)  - 2x(O)  - sir’(O)  - x”(0) + 4[s%(s) - sx(0)  - x’(O)]

+ S[sx(s)  - x(O)]  + 2x(s) = 5

where x(s)  = L{x(r)}.  Use has been made of the linearity property and of the
fact that only positive values of t are  of interest. Inserting the initial conditions and
solving for x(s)

x(s) = 2
s(s3  + 4s2  + 5s  + 2)

(2.3)

This is the required answer, the Laplace  transform  of x(t).

Solution of Differential Equations
There are two important points to note regarding this last example. In the first
place, application of the transformation resulted in an equation that was solved for
the unknown function by purely algebraic means.  Second, and most important,
if the function x(t), which has the Laplace  transform 2/s(s 3 + 4s2  + 5s + 2)
were known, we would have the solution to the differential equation and bound-
ary conditions. This suggests a procedure for solving differential equations that is
analogous to that of using logarithms to multiply or divide. To use logarithms, one
transforms the pertinent numbers to their logarithms and then adds or subtracts,
which is much easier than multiplying or dividing. The result of the addition or
subtraction is the logarithm of the desired answer. The answer is found by refer-
ence to a table to find the number having this logarithm. In the Laplace transform
method for solution of differential equations, the functions are converted to their
transforms and the resulting equations are solved for the unknown function alge-
braically. This is much easier than solving a differential equation. However, at
the last step the analogy to logarithms is not complete. We obviously cannot hope
to construct a table containing the Laplace  transform of every function f(t) that
possesses a transform. Instead, we shall develop methods for reexpressing com-
plicated transforms, such as x(s)  in Example 2.2, in terms of simple transforms
that can be found in Table 2.1. For example, it is easily verified that the solution
to the differential equation and boundary conditions of Example 2.2 is

x(t) = 1 - 2te-’  - e-2r

The Laplace  transform of x, using Eq. (2.4) and Table 2.1, is

(2.4)

1 1 1- - --4s)  = ; - zcs + 1)2
s+2

(2.5)

Equation (2.3) is actually the result of placing Eq. (2.5) over a common denomi-
nator. Although it is difficult to find x(t)  from Eq. (2.3),  Eq. (2.5) may be easily
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inverted to Eq. (2.4) by using Table 2.1. Therefore, what is required is a method
for expanding the common-denominator form of Eq. (2.3) to the separated form
of Eq. (2.5). This method is provided by the technique of partial fractions, which
is developed in Chap. 3.

SUMMARY
To summarize, the basis for solving linear, ordinary differential equations with
constant coeficients with Laplace  transforms has been established.

The procedure is:

1. Take the Laplace  transform of both sides of the equation. The initial conditions
are incorporated at this step in the transforms of the derivatives.

2. Solve the resulting equation for the Laplace  transform of the unknown function
algebraically.

3. Find the function of t that has the Laplace  transform.obtained  in step 2. This
function satisfies the differential equation and initial conditions and hence is
the desired solution. This third step is frequently the most difficult or tedious
step and will be developed further in the next chapter. It is called inversion of
the transform. Although there  are other techniques available for inversion, the
one that we shall develop and make consistent use of is that of partial-fraction
expansion.

A simple example will serve to illustrate steps 1 and 2, and a trivial case of
step 3.

Example 2.3. Solve

$+3x  =o

x(0) = 2

We number our steps according to the discussion in the preceding paragraphs:

1. sx(s)  - 2 + 3x(s) = 0

2. x(s) = -& = 2-&

3. x(t) = 2,-3r



CHAPTER

3
INVERSION
BY PARTIAL
FRACTIONS

Our study of the application of Laplace  transforms to linear differential equations
with constant coefficients has enabled us to rapidly establish the Laplace  transform
of the solution. We now wish to develop methods for inverting the transforms to
obtain the solution in the time domain. The first part of this chapter will be a series
of examples that illustrate the partial-fraction technique. After a generalization of
these techniques, we proceed to a discussion of the qualitative information that
can be obtained from the transform of the solution without inverting it.

The equations to be solved are all of the general form

d”x

a’ dtn

+ a _ d”-lx
n ’  dt”-1  +

The unknown function of time is x(t), and an,  an _ 1,  . . . , a 1,  a 0, are constants.
The given function f(t)  is called theforcingfunction.  In addition, for all problems
of interest in control system analysis, the initial conditions are given. In other
words, values of x, dxldt,. . . , d”-‘xldP-*  are specified at time zero. The
problem is to determine x(t)  for all t 2 0.

Partial Fkactions

In the series of examples that follow, the technique of partial-fraction inversion
for solution of this class of differential equations is presented.

22
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Example 3.1. Solve

$+x = 1

x(0) = 0

Application of the Laplace  transform yields

sx(s)  + x(s) = 5

o r

1
n(s) = -

s(s + 1)

The theory of partial fractions enables us to write this as

x(s) =
1 A B-=-+-

s(s + 1) s s+1 (3.1)

where A and B are constants. Hence, using Table 2.1, it follows that

n(t)  = A + Be-’ (3.2)

Therefore, if A and B were known, we would have the solution. The conditions on
A and B are that they must be chosen to make Eq. (3.1) an identity in s.

To determine A, multiply both sides of Eq. (3.1) by s.

1 BZ
-=A+-
s+l s+1 (3.3)

Since this must hold for all s, it must hold for s = 0. Putting s = 0 in Eq. (3.3)
yields

A=1

To find B, multiply both sides of Eq. (3.1) by (s + 1).

1
- = ;(s  + 1) + B (3.4)
S

Since this must hold for all s, it must hold for s = - 1. This yields

B = - 1

Hence,

1 1 1-=---
s(s + 1) s s+l

and therefore,

x(f)  = 1 -e-’

(3.5)

(3.6)
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Equation (3.5) may be checked by putting the right side over a common denomi-
nator, and Eq. (3.6) by substitution into the original differential equation and initial
condition.

Example 3.2. Solve
3 2

~+2~-~-2x=4+e2’

x(0) = 1 x’(0) = 0 x”(0) = -1

Taking the Laplace  transform of both sides,

1
[s3x(s) - s*  + 11 + 2[s%(s)  - s]  - [$X(S)  - 11 - 2.X(s)  = % + -

s - 2

Solving algebraically for x(s),

x(s)
s4  - 6s2 + 9s - 8

=
s(s - 2)(s3  + 2s2  - s - 2)

The cubic in the denominator may be factored, and x(s)  expanded in partial fractions

x(s)  =
s4  - 6s2  + 9s - 8 A B

s(s - 2)(s + I)(s + 2)(s - 1) = s
+C+D+E+----

s - 2 s+1,  s+2 s-1
(3.7)

To find A, multiply both sides of Eq. (3.7) by s and then set s = 0; the result is

A =
- 8

(-2)(1)(2)(-l) = -2

The other constants are determined in the same way. The procedure and results are
summarized in the following table. ~’

To determine multiply (3.7) by and set s to Result

B s - 2 2 B = ‘1’12
c s+l - 1 c = 1%
D s+2 - 2 D = - ‘712
E s - l 1 E = ?v

Accordingly, the solution to the problem is

x(t) = -2 + +2t  +  l&-t  _ ++-2t  +  jet

A comparison between this method and the classical method, as applied to
Example 3.2, may be profitable. In the classical method for solution of differential
equations we first write down the characteristic function of the homogenepus
equation:

s3  + 2s2  - s - 2 = 0
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This must be factored, as was also required in the Laplace  transform method, to
obtain the roots -1, -2, and + 1. Thus, the complementary solution is

xc(t) = Cle-’ + C*e-*’ + C3e’

Furthermore, by inspection of the forcing function, we know that the particular
solution has the form

x,(t) = A + Be2f

The constants A and B are determined by substitution into the differential equation
and, as expected, are found to be -2 and A, respectively. Then

*x ( t )  =  - 2  +  fie 2t + Cle-’ + C2em2’  + Cse’

and the constants Cl,  C2,  and Cs are determined by the three initial conditions.
The Laplace  transform method has systematized the evaluation of these constants,
avoiding the solution of three simultaneous equations. Four points are worth not-
ing:

1. In both methods, one must find the roots of the characteristic equation. The
roots give rise to terms in the solution whose form is independent of the forcing
function. These terms make up the complementary solution.

2. The forcing function gives rise to terms in the solution whose form depends
on the form of the forcing function and is independent of the left  side of the
equation. These terms comprise the particular solution.

3. The only interaction between these sets of terms, i.e., between the right side
and left side of the differential equation, occurs in the evaluation of the con-
stants involved.

4. The only effect of the initial conditions is in the evaluation of the constants.
This is because the initial conditions affect only the numerator of x(s), as may
be seen from the solution of this example.

In the two examples we have discussed, the denominator of x(s)  factored
into real factors only. In the next example, we consider the complications that
arise when the denominator of x(s)  has complex factors.

Example 3.3. Solve
2

$+2$+2x=2

x(0) = x’(0) = 0

Application of the Laplace  transform yields

x(s) =
2

s(s2 + 2s + 2)

The quadratic term in the denominator may be factored by use of the quadratic
formula. The roots are found to be (-1 - j) and (-1 + j). This gives the partial-
fraction expansion

x(s) =
2 A B c

s(s  + 1 + j)(s + 1 - j) = s + (s + 1 + j) + (s + 1 - j) (3.8)
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where A, B, and C are constants to be evaluated, so that this relation is an identity
in s. The presence of complex factors does not alter the procedure at all. However,
the computations may be slightly more tedious.

To obtain A, multiply Eq. (3.8) by s and set s = 0:

2
A = (1 + j)(l - j) = l

To obtain B, multiply Eq.  (3.8) by (s + 1 + j) and set s = (-1 - j):

B =
2 - 1 - jEp

(-1 - j)(-2j) 2

To obtain C, multiply Eq. (3.8) by (s + 1 - j) and set s = (-1 + j):

Therefore,

C =
2 - l + j=-

C-1 + j>Gj) 2

-1-j 1
x(s) = ; + ~

2 s + l + j
+-l+j 1

2 s + l - j

This is the desired result. To invert n(s), we may now use the  fact that l/(s  + a) is
the transform of e - r.  The fact that Q is complex does not invalidate this result, as
can be seen by returning to the derivation of the  transform of e --ar.  The result is

x ( t )  =  1 +  -e
-1  - j -(l+j)t  I -1  + j,-(l-j)r

2 2

Using the identity

da+jbjr = eaf(cos  bt + j sin bt)

this can be converted to

x(t) = 1 - e-‘(cos  t + sin t)

The details of this conversion are recommended as an exercise for the reader.

A more general discussion of this case will promote understanding. It was
seen in Example 3.3 that the complex conjugate roots of the denominator of
x(s) gave rise to a pair of complex terms in the partial-fraction expansion. The
constants in these terms, B and C, proved to be complex conjugates (-  1 - j)/2  and
(-  1 + j)/2.  When these terms were combined through a trigonometric identity,
it was found that the complex terms canceled, leaving a real  result for x(t). Of
course, it is necessary that x(t) be real, since the original differential equation
and initial conditions are real.

This information may be utilized as follows: the general case of complex
conjugate roots arises in the form

x(s) = F(s)
(s + kl + jk2)(S + kl - jk2)

where F(s) is some real  function of s.

43.9)
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For instance, in Example 3.3 we had

F(s)  = 5 kr=l  k2=1

Expanding (3.9) in partial fractions,

(s + kl + jkz)(s  + kl - jk2) = Fl(s)
(3.10)

+
a1 + jbl

s +kl+  jk2
+

a2  + jb2

s + kl - jk2

where at,  ~2, bl,  b2  are the constants to be evaluated in the partial-fraction ex-
pansion and Fl(s)  is a series of fractions arising from F(s).

Again, in Example 3.3,

1 1
a1  =  - -

2
a2  =  - -

2
bl = -; b2 = ; Fl(s)  = ;

Now, since the left side of Eq. (3.10) is real for all real s,  the right side must also
be real for all real s.  Since two complex numbers will add to form a real number
if they are complex conjugates, it is seen that the right side will be realfir  all real
s if and only if the two terms are complex conjugates. Since the denominators of
the terms are conjugates, this means that the numerators must also be conjugates,
o r

a2 = al

b2  = -bl

This is exactly the result obtained in the specific case of Example 3.3. With this
information, Eq. (3.10) becomes

F(s)
(s + kl + jk2)(s  + kl - jk2) = Fl(s)

+
i

~1 + jh + al - jh
s + kl + jk2 s + kl - jk2 i

(3.11)

Hence, it has been established that terms in the inverse transform arising
from the complex conjugate roots may be written in the form

(al  +  jbl)e(-kl-jk2)’  +  (al  _  jbl)e(-kl+jk2)t

Again, using the identity

e(Cl+jC2)r  = eC~t (cos C2t  + j sin C2t)

this reduces to

2eeklr(alcos  kzt  + bl sin kg) (3.12)
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Let us now rework Example 3.3 using Eq. (3.12). We return to the point at
which we arrived, by our usual techniques, with the conclusion that

- 1 - jB=-
2

Comparison of Eqs. (3.8) and (3.11) and the result for B show that we have
two possible ways to assign a 1,  bl, kl,  and k2  so that we match the form of Eq.
(3.11). They are

bl  = -; bI  = ;

or

k,  = 1 kl  = 1
k2  = 1 k2  =  - 1

The first way corresponds to matching the term involving B with the first term of
the conjugates of Eq. (3.1 l), and the second to matching it with the second term.
In either case, substitution of these constants into Eq. (3.12) yields

--e-‘(cos  t + sin t)

which is, as we have discovered, the correct term in x(t).
What this means is that one can proceed directly from the evaluation of one

of the partial-fraction constants, in this case B, to the complete term in the inverse
transform, in this case -e-‘(cos  t + sin t). It is not necessary to perform all the
algebra, since it has been done in the general case to arrive at Eq. (3.12).

Another example will serve to emphasize the application of this technique.

Example 3.4. Solve

d2x
- +4x = 2e-’
dt2

x(0) = x ‘(0) = 0

The Laplace  transform method yields

2
x(s)  = (s2  + 4)(s  + 1)

Factoring and expanding into partial fractions,

2 A B c
(s + l)(s  + 2j)(s - 2j) = - +s+l

-+-----Y-
s + 2j s - 2j

(3.13)

Multiplying Eq. (3.13) by (S  + 1) and setting s = -1 yield

A =
2 2

(-1 +2j)(-1  -2j) = 5
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Multiplying Eq. (3.13) by (s + 2j) and setting s = -2 j yield

B =
2 -2 + j=-

(-2j  + l)(-4j) 10

Matching the term

(-2 + j)/lO
s + 2j

with the first term of the conjugates of Eq. (3.11) requires that

bl  = &,

kl  = 0

k2  = 2,

Substituting in (3.12) results in

-3cos2t+  isin2t

Hence the complete answer is

x(t) = 2e-r  - 5 cos 2t + 1 sin 2t5

Readers should verify that this answer satisfies the differential equation and boundary
conditions. In addition, they should show that it can also be obtained by matching
the term with the second term of the conjugates of Eq. (3.11) or by determining C
instead of B.

ALTERNATE METHOD USING QUADRATIC TERM. Another method for solv-
ing Example 3.3, which avoids some of the manipulation of complex numbers,
is as follows. Expand the expression for x(s):

x(s) =
2 A B s  + C

s(s2 + 2s + 2) = s
+

s2  + 2s + 2
(3.14)

In this expression, the quadratic term is retained and the second term on the right
side is the most general expression for the expansion. The reader will find this
form of expansion for a quadratic. term in books on advanced algebra.

Solve for A by multiplying both sides of Eq. (3.14) by s and let s = 0.
The result is A = 1. Determine B and C algebraically by placing the two terms
on the right side over a common denominator; thus

x(s) =
2 = (s2 + 2s + 2)A + Bs2  + Cs

s(s2 + 2s + 2) s(s2 + 2s + 2)

Equating the numerators on each side gives

2 = (A + B)s2  + (2A + C)s + 2A
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We now equate the coefficients of like powers of s to obtain

A + B = O

2A+c=o

2A=2

Solving these equations gives A = 1, B = - 1, and C = -2. Equation (3.14)
now becomes

x(s) = f -
s 2-

s2  + 2s + 2 s2+2s  +2

We now rearrange the second and third terms to match the following transform
pairs from Table 2.1:

e -a’sin  kt kl[(s  + cQ2  + k2]

e -ardor  kt (s + a)/[(~  + cQ2  + k2]

The result of the rearrangement gives

(3.152)

(3.15b)

1 s+l 1
+) = s - (s + 1)2  + 12  - (s + 1)2  + 12

We see from the quadratic terms that a = 1 and k = 1, and using the table
of transforms, one can easily invert each term to give

x(t)  = 1 - e-‘cos  t - e-‘sin  t

which is the same result obtained before.
A general discussion of this case follows. Consider the general expression

involving a quadratic term

x(s)  = F(s)
s2  + as + p

(3.16)

where F(s) is some function of s (e.g. I/s). Expanding the terms on the right side
gives

x(s) = Fl(s)  +
Bs + C

s2 + as + p
(3.17)

where Fl(s)  represents other terms in the partial-fraction expansion. First solve
for B and C algebraically by placing the right side over a common denominator
and equating the coefficients of like powers of s. The next step is to express the
quadratic term in the form

s2 + crs  + p = (s + u)~  + k2

The terms a and k can be found by solving for the roots of s 2 + (YS + p = 0
by the quadratic formula to give s 1 = -a  + j k, sq  = -a - j k . The quadratic
term can now be written

s2  + as + p = (s - sl)(s - s2) = (s + a - jk)(s + a + jk) = (s + u)~  + k2
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Equation (3.17) now becomes

Bs + C
x(s)  +  Fib)  +  @ +  a)*  +  p

The numerator of the quadratic term is now written to correspond to the transform
pairs given by Eqs. (3.1% and b)

Bs+C  = B  s+a+
1

(C/B) - a C-aBk

k
k 1 = B(s  + a) + k

Equation (3.18) becomes

(s + a)
X(S) =  Fl(s)  +  B cs  +  aj2  +  k2 +

k

(s + ~2)~  + k*

Applying the transform pairs of Eqs. (3.1% and b)  to the quadratic terms on the
right gives

x(t) = Fl(t) + Bematcos  kt + -atsin  kt (3.19)

where F1 (t) is the result of inverting Fl(s). We now apply this method to the
following example.

Example 3.5. Solve

1 A Bs + C
x(s) =

s(s2  - 2s + 5) = s-+s*-2,+5

Applying the quadratic equation to the quadratic term gives:

2k  JFzi
s1,2  = 2

= lk2j

Using the method just presented, we find that a = - 1, k  = 2. Solving for A,
B, and C gives A = l/S, B = -l/5,  C = 215. Introducing these values into the
expression for x(s) and applying Eq. (3.19) gives

1 1 1
x(t) = 5 - Jetcos 2t + Ge’sin  2t

The reader should solve Example 3.4 with this alternate method, which uses
Eq. (3.19).

In the next example, an exceptional case is considered; the denominator of
x(s) has repeated roots. The procedure in this case will vary slightly from  that of
the previous cases.

Example 3.6. Solve
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Application of the Laplace  transform yields

x(s) =
1

s(s3  + 3s*  + 3s + 1)

Factoring and expanding in partial fractions,

x(s) =
1 A B c D

s(s + 1)X  = s
~ ~ -

+ (s + 1)3 + (s +  1>*  + s+l
(3.20)

As in the previous cases, to determine A, multiply both sides by s and then set s to
zero. This yields

A=1

Multiplication of both sides of Eq. (3.20) by (s + 1)3 results in

_ = 4s + II31
S

+ B + C(s  + 1) + D(s  + l)*
s

(3.21)

Setting s = -1 in Eq. (3.15) gives

B = -1

Having found A and B, introduce these values into Eq. (3.20) and place the right
side of the equation over a common denominator; the result  is:

1 = (s + 1)3 - s + Cs(s  + 1) + Ds(s + l)*
s(s + 1)3 s(s + 1)3

(3.22)

Expanding the numerator of the right side gives

1 = (1 + D)s3 + (3 + C + 2D)s*  + (2 + C + D)s  + 1
s(s + 1)s s(s + 1)s

(3.23)

We now equate the numerators on each side to get

1 = (1 + D)s3 + (3 + C + 2D)s*  + (2 + C + D)s  + 1

Equating the coefficients of like powers of s gives

l+D=O

3+C+2D=O

2+C+D=O

Solving these equations gives C = - 1 and D = - 1.
The final result is then

1 1 1 1- - - - -
-Gs)  =  ; - (s +  I)3 (s + 1)2 s+l

(3.24)

Referring to Table 2.1, this can be inverted to

x(t) = 1 - e-’ (3.25)
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The reader should verify that Eq. (3.24) placed over a common denominator results
in the original form

x(s) =
1

s(s + 1)3

and that Eq.  (3.25) satisfies the differential equation and initial conditions.

The result of Example 3.6 may be generalized. The appearance of the fac-
tor (S + u)~ in the denominator of X(S) leads to n terms in the partial-fraction
expansion:

Cl c2 C*

( s  +  up  ’ ( s  +  a ) “ - ’  ’ .  .  .  ’ z-i

The constant Cl can be determined as usual by multiplying the expansion by
(S  + u)~ and setting s = -a. The other constants are determined by the method
shown in Example 3.6. These terms, according to Table 2.1, lead to the following
expression as the inverse transform:

Cl
(n  -  J-l +

c2------p-2
+(n - 2)!

*.-  + CnmIt  + C, evar1 (3.26)

It is interesting to recall that in the classical method for solving these equations,
one treats repeated roots of the characteristic equation by postulating the form of
Eq. (3.26) and selecting the constants to fit the initial conditions.

Qualitative Nature of Solutions

If we are interested only in the form of the solution x(t), which is often the
case in our work, this information may be obtained directlyffom  the roots of the
denominator ofx(s).  As an illustration of this “qualitative” approach to differential
equations consider Example 3.3 in which

2 A B C
x(s) =

s(s2 + 2s + 2) = s
+ +

s+1+j s+1-j

is the transformed solution of

d2x 2dx- -
dt* + dt

+ 2 x = 2

It is evident by inspection of the partial-fraction expansion, without evaluation of
the constants, that the s in the denominator of x(s) will give rise to a constant in
x(t).  Also, since the roots of the quadratic term are - 1 k j , it is known that x(t)
must contain terms of the form e -‘(C ices t + C2sin t). This may be sufficient
information for our purposes. Alternatively, we may be interested in the behavior
of x(t)  as t + CQ. It is clear that the terms involving sin and cos vanish because
of the factor e-‘. Therefore, x(t)  ultimately approaches the constant, which by
inspection must be unity.

The qualitative nature of the solution x(t)  can be related to the location of
the roots of the denominator of X(S) in the complex plane. These roots are the roots
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acteristic equation.

of the characteristic equation and the roots of the denominator of the transformed
forcing function. Consider Fig. 3.1, a drawing of the complex plane, in which
several typical roots are located and labeled with their coordinates. ‘lhble 3.1 gives
the form of the terms in the equation for x(f), corresponding to these roots. Note
that all constants, a 1,  ~2, . . . , bl, b2, . . . , are taken as positive. The constants
Cl and C2 am  arbitrary and can be determined by the partial-fraction expansion
techniques. As discussed above, this determination is often not necessary for our
work.

If any of these roots am  repeated, the term given in Table 3.1 is multiplied
by a power series in t,

K1  + K2t + Kg2  + ..a + K/--l

where r is the number of repetitions of the root and the constants Kl, K2,  . . . ,
K,  can be evaluated by partial-fraction expansion.

It is thus evident that the imaginary axis divides the root locations into dis-
tinct areas, with regard to the behavior of the corresponding terms in x(t) as t
becomes large. Terms corresponding to roots to the left of the imaginary axis
vanish exponentially in time, while those corresponding to roots to the right of

TABLE 3.1

Roots lhllslllx(f)f6rr>O

Sl CleTol’

s2, s; e-@(C1  cos bzt  + C2  sin bzt)

s9, s; Cl  cos bgt + C2  sin bgt

s4, s; eQ’(C1 cos bqt + C2  sin b4t)

s5 Cl  enSr

S6 Cl
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the imaginary axis increase exponentially in time. Terms corresponding to roots
at the origin behave as power series in time, a constant being considered as a
degenerate power series. Terms corresponding to roots located elsewhere on the
imaginary axis oscillate with constant amplitude in time unless they are multiple
roots in which case the amplitude of oscillation increases as a power series in
time. Much use will be made of this information in later sections of the text.

SUMMARY
The reader now has available the basic tools for the use of Laplace  transforms to
solve differential equations. In addition, it is now possible to obtain considerable
information about the qualitative nature of the solution with a minimum of labor.
It should be pointed out that it is always necessary to factor the denominator
of x(s)  in order to obtain any information about x(t). If this denominator is a
polynomial of order three or more, this may be far from a trivial problem. Chapter
15 is largely devoted to a solution of this problem within the context of control
applications.

The next chapter is a grouping of several Laplace  transform theorems that
will find later application. In addition, a discussion of the impulse function 8(t)
is presented there. Unavoidably, this chapter is rather dry. It may be desirable for
the reader to skip directly to Chap. 5, where our control studies begin. At each
point where a theorem of Chap. 4 is applied, reference to the appropriate section
of Chap. 4 can be made.

PROBLEMS
3.1. Solve the following using Laplace  transforms:

(a)  ~+~+.=1 x(0)  = x’(0)  = 0

2

(b) $+%+m x(0) = x’(0)  = 0

(c) $.~.,=I x(0)  = x ‘(0)  = 0

Sketch the behavior of these solutions on a single graph. What is the effect of
the coefficient of dxldt?

3.2. Solve the following differential equations by Laplace  transforms:

d4x d3x
(a) -$ + -j-p-  = cos t x(0) = x ‘(0) = x “‘(0) = 0 x “(0) = 1

( b )  $+s =  t2+2t q(O)  = 4 q’(0) = -2

3.3. Invert the following transforms:

3 s
@) (s2  + l)(s2 + 4)
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@I
1

s(s2  - 2s + 5)

(4
3s3  - s2 -3s+2

sqs  - I)2

3.4. Expand the following functions by pm+fraction  expansion. Do not  evaluate coef-
ficients or invert expressions.

(4 X(s)  =

(b)  X(s)  =

Q-3  X(s)  =

2
(s + l)(s2 + 1)2(s  + 3)

1
s3(s  + l)(s  + 2)(s + 3)3

1
(s + l)(s  + 2)(s + 3)(X + 4)

3.5.

3.6.

(a) Invert: x(s)  = l/[s(s  + 1)(0.5s + l)]
(b)  Solve: dxldt + 2x = 2, x(O)  = 0
Obtain y(t) for

(4 Y(S) = , 2  1 :,l+  5

(b)  y(s) = +

(cl  Y(S) = &

3.7.

3.8.

(a) Invert the following function

y(s) = l/(s2 + 1)2

(b)  Plot y versus t from 0 to 37r.
Determine f(t)  for f(s) = l/[s2(s  + l)].



CHAPTER

4
FURTHER

PROPERTIES
OFTRANSFORMS

This chapter is a collection of theorems and results relative to the Laplace  trans-
formation. The theorems are selected because of their applicability to problems in
control theory. Other theorems and properties of the Laplace  transformation are
available in standard texts [see Churchill (1972)].  In later chapters, the theorems
presented here will be used as needed.

Rnal-Value Theorem
If f(s) is the Laplace  transform of f(t), then

provided that sf(s)  does not become infinite for any value of s satisfying
Re(s)  L 0. If this condition does not hold, f(t) does not approach a limit
as t 1 03.  In the practical application of this theorem, the limit of f(t) that is found
by use of the theorem is correct only if f(t) is bounded as t approaches infinity.

Proof. From the Laplace  transform of a derivative, we have

I
m dfp

o dt
dt = sf(s) - f(0)

37
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lim
I

m df
0 dte

--St
SlO

dt =slt;lW..(~)l  - f(o)

It can be shown that the order of the integration and limit operation on the left
side of this equation can be interchanged if the conditions of the theorem hold.
Doing this gives

Evaluating the integral,

limlY(t)l  - f(o)  =s;mW(s)l  - fK9
tlm

which immediately yields the desired result.

Example 4.1. Find the final value of the function n(t) for which the Laplace  trans-
form is

n(s) =
1

s(s3  + 3s*  + 3s + 1)

Direct application of the final-value theorem yields

lim [n(t)] =,,im
1

1
t1m s3  + 3s*  + 3s + 1 =

As a check, note that this transform was inverted in Example 3.6 to give

x(t) = 1 - emt
t*

( i
y+r+1

which approaches unity as t approaches infinity. Note that since the denominator of
sx(s)  can be factored to (s + 1)3,  the conditions of the theorem am  satisfied; that
is, (s + 1)3 + 0 unless s = -1.

Example 4.2. Find the final value of the function x(t)  for which the Laplace  trans-
form is

x(s) =
s4  - 6s2  + 9s - 8

s(s - 2)(s3  + 2s*  - s - 2)

In this case, the function sx(s) can be written

s4  - 6s2  + 9s - 8
sx(s) = (s + l)(s  + 2)(s - l)(s  - 2)

Since this becomes infinite for s = 1 and s = 2, the conditions of the theorem
are not satisfied. Note that we inverted this transform in Example 3.2, where it was
found that

1 2t 11 -r
x ( t ) =  -2+12e  + - j - e 17 - 2 t  +  1,t

- iie 3
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This function continues to grow exponentially with t and, as expected, does not
approach a limit.

The proof of the next theorem closely parallels the proof of the last one and
is left as an exercise for the reader.

Initial-Value Theorem

M.f(~)l =sLlp  Esf(s>l
tl0

The conditions on this theorem are not so stringent as those for the previous one
because for functions of interest to us the order of integration and limiting process
need not be interchanged to establish the result.

Example 4.3. Find the initial value x(0) of the function that has the following
transform

x(s) =
s4  - 6s2  + 9s - 8

s(s - 2)(s3  + 2s2  - s - 2)

The function sx(s) is written in the form

sx(s)  =
s4  - 6s2  + 9s - 8

s4  - 5s*  + 4

After performing the indicated long division, this becomes

sx(s)  = 1 -
s*  - 9s + 12
s4  - 59 + 4

which clearly goes to unity as s becomes infinite. Hence

x(0) = 1

which again checks Example 3.2.

lkanslation  of lkansform
If LCf(t)} = f(s), then

L{e-“‘f(t)}  = f(s  + a)

In other words, the variable in the transform s is translated by a.

Proof.

L{e-atf  (t)} =
Ieof (t)e-- (s+a)tdt = f (s ‘+ a)

Example 4.4. Find L{eCarcos  kt}. Since

L{cos  kt} = -&
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then by the previous theorem,
S+U

ue-nrcoS  ktl  = @  + a)2  + @

which checks Table 2.1.

A primary use for this theorem is in the inversion of transforms. For example,
using this theorem the transform

1
xCs)  = (s  + a)2

can be immediately inverted to

x(t) = teea’

In obtaining this result, we made use of the following transform pair from Table
2.1:

lkanslation  of Fbnction

If L(f(t)}  = f(s), then

LCf(t - to)}  = ehsrof(s)

provided that

f(t)  = 0 for t < 0

(which will always be true for functions we use).
Before proving this theorem, it may be desirable to clarify the relationship

between f (t - to) and f(t). This is done for an arbitrary function f(t) in Fig.
4.1, where it can be seen that f (t - to) is simply translated horizontally from
f(t) through a distance to.

t
f

0 to t----t FIGURE 4-1
Illustration of f(i  - to)  as related to f(t).
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Proof.

W(t - to))  =
i
Of(t  - tO)emsfdt

co

= e
I

--sto f(t - t0>e -Wo)(qt  - to)

-to

But since f(t) = 0 for t < 0, the lower limit of this integral may be replaced by
zero. Since (t - to) is now the dummy variable of integration, the integral may
be recognized as the Laplace  transform of f(t); thus, the theorem is proved.

This result is also useful in inverting transforms. It follows that, if f(t) is
the inverse transform of f(s), then the inverse transform of

POf  (s)

is the function

g(t) = ;(t  _ to)i
t < to
t > trJ

Example 4.5. Find the Laplace  transform of

f(t)  =
i

P_
t-co

0”
O<t<h
t>h

This function is pictured in Fig. 4.2. It is clear that f(t)  may be represented by the
difference of two functions,

f(t) = ;[u(t)  - u(t  - h)]

where u(t - h) is the unit-step function translated h units to the right. We may now
use the linearity of the transform and the previous theorem to write immediately

f(s) = I l - e-hs
h s

This result is of considerable value in establishing the transform of the unit-impulse
function, as will be described in the next section.

1
+

t
f@)

0 h FIGURE 4-2
t----t Pulse function of Example 4.5.
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lkansform of the Unit-impulse Function
Consider again the function of Example 4.5. If we allow h to shrink to zero, we
obtain a new function which is zero everywhere except at the origin, where it is
infinite. However, it is important to note that the area under this function always
remains equal to unity. We call this new function 8(t), and the fact that its area
is unity means that

I

m
G(t)& =  1

--m

The graph of s(t)  appears as a line of infinite height at the origin, as indicated in
Table 2.1. The function 8(t) is called the unit-impulse function or, alternatively,
the delta function.

It is mentioned here that, in the strict mathematical sense of a limit, the
function f(t) does not possess a limit as h goes to zero. Hence, the function
8(t) does not fit the strict mathematical definition of a function. To assign a
mathematically precise meaning to the unit-impulse function requires use of the
theory of distributions, which is clearly beyond the scope of this text. However,
for our work in automatic control, we shall be able to obtain useful results by
formal manipulation of the delta function, and hence we ignore these mathematical
difficulties.

We have derived in Example 4.5 the Laplace  transform of f(t) as

Formally, then, the Laplace  transform of 8(t) can be obtained by letting h go to
zero in LCf(t)}.  Applying L’HBpital’s  rule,

h-0  S

This “verifies” the entry in Table 2.1.
It is interesting to note that, since we rewrote f(t) in Example

f(t) = $u(t)  - u(t - h)]

then 8(t) can be written as

6(t) = /imo
u(r) - u(t - h)

+ h

(4.1)

4.5 as

In this form, the delta function appears as the derivative of the unit-step function.
The reader may find it interesting to ponder this statement in relation to the graphs
of s(t)  and u(t) and in relation to the integral of 8(t) discussed previously.

The unit-impulse function finds use as an idealized disturbance in control
systems analysis and design.
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lkansform  of an Integral
If LCf(t)}  = f(s), then

L
11  1

lf(t)dt  = y
0

This important theorem is closely related to the theorem on differentiation. Since
the operations of differentiation and integration are inverses of each other when
applied to the time functions, i.e.,

-$/-otf(t)dt = j-ot %dt = f(t) (4.2)

it is to be expected that these operations when applied to the transforms will also
be inverses. Thus assuming the theorem to be valid, Eq. (4.2) in the transformed
variable s becomes

sf(s) -
s fsf(s) = f(s)

In other words, multiplication of f(s) by s corresponds to differentiation of f(t)
with respect to t, and division off(s) by s corresponds to integration off(t) with
respect to t.

The proof follows from a straightforward integration by parts.

f ( s )  =  /omf(t)e-l’dt

Let

u = e-S’ dv = f(t)dt

Then

d u  =  --sems’dt v  =
I

‘f(t)dt
0

Hence,

f ( s )  =  eCS’ ~otf(t)dt~~+sjoX[j-o~f(t)dt]e-stdt

Since f(t) must satisfy the requirements for possession of a transform,
it can be shown that the first term on the right, when evaluated at the upper
limit of 03, vanishes because of the factor eesr. Furthermore, the lower limit
clearly vanishes, and hence, there is no contribution from the first term. The
second term may be recognized as sL{&,’  f (t)dt}, and the theorem follows im-
mediately.
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Example 4.6. Solve the following equation for x(t):

x(t)dt - I

Taking the Laplace  transform of both sides, and making use of the previous
theorem

Solving for x(s),

sx(s)  - 3 = q - L
s2

3s2 - 1 39 -x(s) 1=
s(s2  - 1) = s(s -I-  l)(s - 1)

This may be expanded into partial fractions according to the usual procedure to give

x(s) = A +
1 1
-+-

s s+1 s - l

Hence,
x’(t) = 1 + e-j  + 62

The reader should verify that this function satisfies the original equation.

PROBLEMS
4.1. If a forcing function f(t) has the Laplace  transform

f(s)  = ; + e-s  i2e
-2s

- e-3s
S

graph the function f(t).
4.2. Solve the following equation for y(t):

I
f G(t)

0
y(M7  = dt Y(O)  = 1

4.3. Express the function given in Fig. P4.3 in the t-domain and the s-domain.

0 1 2 3 4 5 6
t

FIGURE P4-3
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4.4. Sketch the following functions:

f(t) = u(t) - 2u(t  - 1) + u(t - 3)

f(t) = 3tu(t)  - 3u(t - 1) - u(t - 2)

4.5. The function f(t) has the Laplace  transform

f(s) = (1  - 2eAS  + ee2’j/s2

Obtain the function f(t) and graph f(t).
4.6. Determine f(t) at t = 1.5 and at t = 3 for the following function:

f(t) = OSu(t) - OSu(t  - 1) + (r - 3)u(r - 2)



44 THELAPLACETRANSFORM

Example 4.6. Solve the following equation for x(t):

x(t)dt - t

x(0) = 3

Taking the Laplace  transform of both sides, and making use of the previous
theorem

SX(S)  - 3 = +) - L
s2

Solving for x(s),
39 - 1 3s2 -x(s) 1=

s(s2  - 1) = s(s + I)(s - 1)

This may be expanded into partial fractions according to the usual procedure to give

x(s) = f +
1 1
-+-
s+l S--l

Hence,
i(t)  = 1 + eet  + et

The reader should verify that this function satisfies the original equation.

PROBLEMS
4.1. If a forcing function f(t)  has the Laplace  transform

f(s)  = f + ems ;2ep2s em3’
S

graph the function f(t).
4.2. Solve the following equation for y(t):

y(T)dT  = 5 y(0)  = 1

4.3. Express the function given in Fig. P4.3 in the t-domain and the s-domain.

0 1 2 3 4 5 6

FIGURE P4-3
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4.4. Sketch the following functions:

f ( t )  = u(t) - 2u(t  - 1) + u(t  - 3)

f(t) = 3tu(t)  - 3u(t  - 1) - u(t  - 2)

4.5. The function f(t) has the Laplace  transform

f(s) = (1 - 2emS  + e-2s)/s2

Obtain the function f(t) and graph f(t).
4.6. Determine f(t) at t = 1.5 and at t = 3 for the following function:

f(t) = 054(t)  - OSu(t - 1) + (t - 3)u(t  - 2)
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CHAPTER

5

RESPONSEOF
FIRST-ORDER

SYSTEMS

Before discussing a complete control system, it is necessary to become familiar
with the responses of some of the simple, basic systems that often are the building
blocks of a control system. This chapter and the three that follow describe in detail
the behavior of several basic systems and show that a great variety of physical
systems can be represented by a combination of these basic systems. Some of the
terms and conventions that have become well established in the  field of automatic
control will also be introduced.

By the end of this part of the book, systems for which a transient must be
calculated will be of high-order and require calculations that are time-consuming
if done by hand. The reader should start now using Chap. 34 to see how the
digital computer can be used to simulate the dynamics of control systems.

TRANSFER FUNCTION
MERCURY THERMOMETER. We shall develop the transfer function for a Jirst-
order system by considering the unsteady-state behavior of an ordinary mercury-
in-glass thermometer. A cross-sectional view of the bulb is shown in Fig. 5 !l .

Consider the thermometer to be located in a flowing stream of fluid for which
the temperature x varies with time. Our problem is to calculate the response or
the time variation of the thermometer reading y for a particular change in x.*

*In order that the result of the analysis of the thermometer be general and therefore applicable to
other first-order systems, the symbols x and y have been selected to represent surrounding temperature
and thermometer reading, respectively.

49
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FIGURE 5-l
Cross-sectional view of thermometer.

The following assumptions* will be used in this analysis:

1. All the resistance to heat transfer resides in the film surrounding the bulb (i.e.,
the resistance offered by the glass and mercury is neglected).

2. All the thermal capacity is in the mercury. Furthermore, at any instant the
mercury assumes a uniform temperature throughout.

3. The glass wall containing the mercury does not expand or contract during the
transient response. (In an actual thermometer, the expansion of the wall has
an additional effect on the response of the thermometer reading. (See Iinoya
and Altpeter (1962) .)

It is assumed that the thermometer is initially at steady state. This means
that, before time zero, there is no change in temperature with time. At time zero
the thermometer will be subjected to some change in the surrounding temperature
x(t).

By applying the unsteady-state energy balance

Input rate - output rate = rate of accumulation

we get the result

dyh A ( x  - y ) - 0  =  mC,

where A = surface area of bulb for heat transfer, ft2
C = heat capacity of mercury, Btu/(lb,)(“F)
m = mass of mercury in bulb, lb,

t = time, hr
h = film coefficient of heat transfer, Btu/(hr)(ft2)(T)

For illustrative purposes, typical engineering units have been used.

(5.1)

*Making the  f i rs t  two assumptions  is  of ten referred to  a s  t h e  l u m p i n g  of p a r a m e t e r s  because  a l l
the resistance is “lumped” into one location and all the capacitance into another. As shown in
the analysis, these assumptions make it possible to represent the dynamics of the system by an
ordinary differential equation. If such assumptions were not ma&, the analysis would lead to a
partial differential equation, and the representation would be referred  to as a distributed-parumeter

system. In Chap. 21, distributed-parameter systems will be considered in detail.
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Equation (5.1) states that the rate of flow of heat through the film resistance
surrounding the bulb causes the internal energy of the mercury to increase at the
same rate. The increase in internal energy is manifested by a change in temperature
and a corresponding expansion of mercury, which causes the mercury column, or
“reading” of the thermometer, to rise.

The coefficient h will depend on the flow rate and properties of the sur-
rounding fluid and the dimensions of the bulb. We shall assume that h is constant
for a particular installation of the thermometer.

Our analysis has resulted in Eq. (5. l), which is a first-order differential equa-
tion. Before solving this equation by means of the Laplace  transform, deviation
variables will be introduced into Eq. (5.1). The reason for these new variables
will soon become apparent. Prior to the change in x,  the thermometer is at steady
state and the derivative dyldt is zero. For the steady-state condition, Eq. (5.1)
may be written

hA(x, - ys)  =  0 t<O (5.2)

The subscript s is used to indicate that the variable is the steady-state value.
Equation (5.2) simply states that yS  = n $, or the thermometer reads the true,
bath temperature. Subtracting Eq. (5.2) from Eq. (5.1) gives

hA[tx  - xd - (Y - ~~11  = mC
d(y  - ys)

dt (5.3)

Notice that d(y - ys)ldt  = dyldt because y,  is a constant.
If we define the deviation variables to be the differences between the vari-

ables and their steady-state values

x=x-xxs

y=y-Ys
Eq.  (5.3) becomes

hA(X - Y) = rnC%

If we let mClhA  = T,  Eq. (5.4) becomes

x-y=g!r
dt

Taking the Laplace  transform of Eq. (5.5) gives

X(s) - Y(s) = TSY(S)

Rearranging  Eq. (5.6) as a ratio of Y(S) to X(S) gives

Y(s) 1-=-
X(s) 7s + 1

(5.4)

(5.5)

(5.6)

(5.7)

The parameter T is called the  time constant of the system and has the units of
time.
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The expression on the right side of Eq. (5.7) is called the transferfunction of
the system. It is the ratio of the Laplace  transform of the deviation in thermometer
reading to the Laplace  transform of the deviation in the surrounding temperature.
In examining other physical systems, we shall usually attempt to obtain a transfer
function.

Any physical system for which the relation between Laplace  transforms of
input and output deviation variables is of the form given by Eq. (5.7) is called a
jfirst-order  system. Synonyms for first-order system are first-order lag and single
exponential stage. The naming of all these terms is motivated by the fact that Eq.
(5.7) results from a first-order, linear differential equation, Eq. (5.5). In Chap. 6
is a discussion of a number of other physical systems which are first-order.

By reviewing the steps leading to Eq. (5.7),  one can discover that the in-
troduction of deviation variables prior to taking the Laplace  transform of the
differential equation results in a transfer function that is free of initial conditions
because the initial values of X and Y are zero. In control system engineering,
we are primarily concerned with the deviations of system variables from their
steady-state values. The use of deviation variables is, therefore, natural as well
as convenient.

PROPERTIES OF TRANSFER FUNCTIONS. In general, a transfer function re-
lates two variables in a physical process; one of these is the cause (forcing function
or input variable) and the other is the effect (response or output variable). In terms of
the example of the mercury thermometer, the surrounding temperature is the cause
or input, whereas the thermometer reading is the effect or output. We may write

Y(s)Transfer function = G(s) = -
X(s)

where G(s) = symbol for transfer function
X(s) = transform of forcing function or input, in deviation form
Y(s)  = transform of response or output, in deviation form

The transfer function completely describes the dynamic characteristics of the
system. If we select a particular input variation X(t) for which the transform is
X(s), the response of the system is simply

Y(s) = G(s)X(s) (5.8)
By taking the inverse of Y(s), we get Y(t), the response of the system.

The transfer function results from a linear differential equation; therefore, the
principle of superposition is applicable. This means that the transformed response
of a system with transfer function G(s) to a forcing function

X(s) = UlXl(S) + a2X2(s)

where Xi  and X2  are particular forcing functions and a i and u2  are constants, is

Y(s) = G(s)X(s)

=  alG(s)Xl(s)  +  a2W)X,(s>

=  alYl(s> +  a2Y2(s)
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Yi(s)  and Y,(s)  are the responses to X1  and X2 alone, respectively. For example,
the response of the mercury thermometer to a sudden change in surrounding
temperature of 10°F is simply twice the response to a sudden change of 5°F in
surrounding temperature.

The functional relationship contained in a transfer function is often expressed
by a block-diagram representation, as shown in Fig. 5.2. The arrow entering the
box is the forcing function or input variable, and the arrow leaving the box is
the response or output variable. Inside the box is placed the transfer function. We
state that the transfer function G(s) in the box “operates” on the input function
X(S) to produce an output function Y(S).  The usefulness of the block diagram
will be appreciated in Chap. 9, when a complete control system containing several
blocks is analyzed.

TRANSIENT RESPONSE
Now that the transfer function of a first-order system has been established, we
can easily obtain its transient response to any forcing function. Since this type of
system occurs so frequently in practice, it is worthwhile to study its response to
several common forcing functions: step, impulse, and sinusoidal. These forcing
functions have been found to be very useful in theoretical and experimental aspects
of process control. They will be used extensively in our studies and hence, each
one is explored before studying the transient response of the first-order system to
these forcing functions.

Forcing lhnctions
STEP FUNCTION. Mathematically, the step function of magnitude A can be ex-
pressed as

X(t) = Au(t)

where u(t) is the unit-step function defined in Chap. 2. A graphical representation
is shown in Fig. 5.3.

x=0;  t<o
X=A;  t10

FIGURE 5-3
Step input.
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The transform of this function is X(S) = A/s. A step function can be
approximated very closely in practice. For example, a step change in flow rate
can be obtained by the sudden opening of a valve.

IMPULSE F’UNCTION.  Mathematically, the impulse function of magnitude A is
defined as

X(t) = Ati

where s(t)  is the unit-impulse function defined and discussed in Chap. 4. A
graphical representation of this function, before the limit is taken, is shown in
Fig. 5.4.

The true impulse function, obtained by letting b I 0 in Fig. 5.4, has
Laplace  transform A. It is used more frequently as a mathematical aid than as
an actual input to a physical system. For some systems it is difficult even to
approximate an impulse forcing function. For this reason the representation of
Fig. 5.4 is valuable, since this form can usually be approximated physically by
application and removal of a step function. If the time duration b is sufficiently
small, we shall see in Chap. 6 that the forcing function of Fig. 5.4 gives a
response that closely resembles the response to a true impulse. In this sense, we
often justify the use of A as the Laplace  transform of the physically realizable
forcing function of Fig. 5.4.

SINUSOIDAL INPUT. This function is represented mathematically by the equa-
tions

x=0 t<O

X =Asinwt tzo

where A is the amplitude and w is the radian frequency. The radian frequency
w is related to the frequency f in cycles per unit time by w = 2~f.  Figure
5.5 shows the graphical representation of this function. The transform is/X(s) =
Aol(s*  + o*). This forcing function forms the basis of an important branch of
control theory known as frequency response. Historically, a large segment of the
development of control theory was based on frequency-response methods, which
will be presented in Chaps. 16 and 17. Physically, it is mote difficult to obtain a
sinusoidal forcing function in most process variables than to obtain a step function.

This completes the discussion of some of the common forcing functions. We
shall now devote our attention to the transient response of the first-order system
to each of the forcing functions just discussed.
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0
t

FIGURE 5-5
Sinusoidal input.

x=0;  t<o
X==A shut;  t;rO

Step Response
If a step change of magnitude A is introduced into a first-order system, the trans-
form of X(t) is

X(s) = + (5.9)

The transfer function, which is given by Eq. (5.7),  is

Y(s) 1-=-
X(s) 7s + 1

Combining Eqs. (5.7) and (5.9) gives

A 1
Y ( s )  =  - -

s7s+l

This can be expanded by partial fractions to give

Y(s) =
A/r Cl c2

(s)(s  + l/T)
=-++

S s + l/T

(5.7)

(5.10)

(5.11)

Solving for the constants Ci and C2 by the techniques covered in Chap. 3 gives
Cl = A and Cz = -A. Inserting these constants into Eq. (5.11) and taking the
inverse transform give the time response for Y:

Y(t)= 0 t<O

Y(t)= A(1 - emr”) tro
(5.12)

Hereafter, for the sake of brevity, it will be understood that, as in Eq. (5.12),  the
response is zero before t = 0. Equation (5.12) is plotted in Fig. 5.6 in terms of
the dimensionless quantities Y(r)/A and t/r.

Having obtained the step response, Eq. (5.12),  from a purely mathematical
approach, we should consider whether or not the result seems to be correct from
physical principles. Immediately after the thermometer is placed in the new envi-
ronment, the temperature difference between the mercury in the bulb and the bath
temperature is at its maximum vaIue.  With our simple lumped-parameter model,
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FIGURE 5-6
Response of a first-order system to
a step input.

we should expect the flow of heat to commence immediately, with the result
that the mercury temperature rises, causing a corresponding rise in the column
of mercury. As the mercury temperature rises, the driving force causing heat to
flow into the mercury will diminish, with the result that the mercury temperature
changes at a slower rate as time proceeds. We see that this description of the
response based on physical grounds does agree with the response given by Eq.
(5.12) and shown graphically in Fig. 5.6.

Several features of this response, worth remembering, are

1. The value of Y(t) reaches 63.2 percent of its ultimate value when the time
elapsed is equal to one time constant T.  When the time elapsed is 27,37,
and 47,  the percent response is 86.5, 95, and 98, respectively. From these
facts, one can consider the response essentially completed in three to four
time constants.

2. One can show from Eq. (5.12) that the slope of the response curve at the
origin in Fig. 5.6 is 1. This means that, if the initial rate of change of Y(t)
were maintained, the response would be complete in one time constant, (See
the dotted line in Fig. 5.6.)

3. A consequence of the principle of superposition is that the response to a step
input of any magnitude A may be obtained directly from Fig. 5.6 by mult’lplying
the ordinate by A. Figure 5.6 actually gives the response to a unit-step function
input, from which all other step responses am  derived by superposition.

These results for the step response of a first-order system will now be applied
to the following example.
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Example 5.1. A thermometer having a time constant* of 0.1 min is at a steady-
state temperature of 90% At time t = 0, the thermometer is placed in a temper-
ature bath maintained at 100°F. Determine the time needed for the thermometer to
read  98”.

In terms of symbols used in this chapter, we have

7 = 0.1 min xs = 90’ A = loo

The ultimate thermometer reading will, of course, be loo”,  and the ultimate value
of the deviation variable Y(m) is IO”.  When the thermometer reads 98”,  Y(t) = 8”.

Substituting into Eq.  (5.12) the appropriate values of Y, A, and T gives

8 = lO(1  - c?“).~)

Solving this equation for t yields

t = 0.161 min

The same result can also be obtained by referring to Fig. 5.6, where it is seen that
Y/A  = 0.8 at t/r  = 1.6.

Impulse Response
The impulse response of a first-order system will now be developed. Anticipat-
ing the use of superposition, we consider a unit impulse for which the Laplace
transform is

X(s) = 1 (5.13)

Combining this with the transfer function for a first-order system, which is given
by Eq. (5.7),  results in

This may be rearranged to
l/r

Y(s) = -
s + l/7

(5.15)

The inverse of Y(s) can be found directly from the table of transforms and can
he written in the form

7Y(t)  = f?-‘* (5.16)

A plot of this response is shown in Fig. 5.7 in terms of the variables t/T
and -rY(t).  The response 50 an impulse of magnitude A is obtained, as usual, by
multiplying TY(t)  from Fig. 5.7 by A/r. /

*The time constant given in this  problem applies to the thermometer when it is located in the
temperature bath. The time constant for the thermometer in air will be considerably different from
that given because of the lower heat-transfer coefficient in air.
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FIGURE 5-7
- 0 1 2 3 4 5 Unit-impulse response o f a first-

VT order system.

Notice that the response rises immediately to 1.0 and then decays exponen-
tially. Such an abrupt rise is, of course, physically impossible, but as we shall
see in Chap. 6, it is approached by the response to a finite pulse of narrow width,
such as that of Fig. 5.4.

Sinusoidal Response
To investigate the response of a first-order system to a sinusoidal forcing function,
the example of the mercury thermometer will be considered again. Consider a
thermometer to be in equilibrium with a temperature bath at temperature x S.  At
some time t = 0, the bath temperature begins to vary according to the relationship

x = xs +Asinot t>O (5.17)

where x = temperature of bath
xs = temperature of bath before sinusoidal disturbance is applied
A = amplitude of variation in temperature
w = radian frequency, radkime

In anticipation of a simple result we shall introduce a deviation variable X
which is defined as

x = x - x , (5,.  18)

Using this new variable in Eq. (5.17) gives

X = A sin ot (5.19)

By referring to a table of transforms, the transform of Eq. (5.19) is

X(s)  = -J$ (5.20)
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Combining Eqs. (5.7) and (5.20) to eliminate X(S) yields

AW l/7
Y ( s )  =  - -

s* + co* s + l/T
(5.21)

This equation can be solved for Y(t) by means of a partial-fraction expansion, as
described in Chap. 3. The result is

Y(t) =
Aore-“’ AWT A
r*w*  + 1 - 7*&J*  + 1

cos wt +
TW  + 1

sin ot (5.22)

Equation (5.22) can be written in another form by using the trigonometric
identity

where

p cos A + q sin A = r sin (A + 0)

r =  Jpq tane=~
4

(5.23)

Applying the identity of Eq. (5.23) to (5.22) gives

Y(t) =
AWT

r*W*+le
-t/7  + sin (wt + 4) (5.24)

where
t$ = tan-‘(-on)

As t + ~0,  the first term on the right side of Eq. (5.24) vanishes and leaves
only the ultimate periodic solution, which is sometimes called the steady-state
solution

Y ( t )  =s J& sin  W + 4) (5.25)

By comparing Eq. (5.19) for the input forcing function with Eq. (5.25) for
the ultimate periodic response, we see that

1. The output is a sine wave with a frequency w equal to that of the input signal.

2. The ratio of output amplitude to input amplitude is l/ ,/T*w*  + 1. This is al-
ways smaller than 1. We often state this by saying that the signal is attenuated.

3. The output lags behind the input by an angle 1 4 I.  It is clear that lag occurs,
for the sign of 4 is always negative.*

*By convention, the output sinusoid lags the input sinusoid if C#J  in Eq. (5.25) is negative. In terms
of a recording of input and output, this means that the input peak occurs before the output peak.
If C$  is positive in E$. (5.29, the system exhibits phase lead, or the output leads the input. In this
book we shall always use the term phase angle (4) and interpret whether there is lag or lead by the
convention

phase lag
phase lead
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For a particular system for which the time constant r is a fixed quantity,
it is seen from Eq. (5.25) that the attenuation of amplitude and the phase angle
4  depend only on the frequency o.  The attenuation and phase lag increase with
frequency, but the phase lag can never exceed 90” and approaches this value
asymptotically.

The sinusoidal response is interpreted in terms of the mercury thermometer
by the following example.

Example 5.2. A mercury thermometer having a time constant of 0.1 min is placed
in a temperature bath at 100°F and allowed to come to equilibrium with the bath. At
time t = 0, the temperature of the bath begins to vary sinusoidally about its average
temperature of lOOoF  with an amplitude of 2°F If the frequency of oscillation is 101~
cycles/min,  plot the ultimate response of the thermometer reading as a function of
time. What is the phase lag?

In terms of the symbols used in this chapter

7 = 0.1

x s = 100°F

A = 2°F

10f  =  - cycles/min
7i-

w = 27rf  = 21r~ = 20 radlmin
7r

From Eq. (5.25),  the amplitude of the response and the phase angle am  cal-
culated; thus

A 2
=  ___  =  0.896”F

vGG-T-l  JGT

4 = --tan-’  2 = -63.5’

or

Phase lag = 63.5’

The response of the thermometer is therefore

Y(t) = 0.896 sin (20t - 63.5’)

or

Y(G) = 100 + 0.896 sin (20t - 63.5’)

To obtain the lag in terms of time rather than angle, we proceed as follows: A
frequency of lO/rr  cycles/min means that a complete cycle (peak‘ to peak) occurs in
(10/r)-’  min. Since one cycle is equivalent to 360” and the lag is 63.5”, the time
corresponding to this lag is

63 .5
- X (time for 1 cycle)
360
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o r

Lag = GE  = 0.0555 min

In general, the lag in units of time is given by

(dl
Lag = 360f

when 4 is expressed in degrees.

The response of the thermometer reading and the variation in bath temper-
ature are shown in Fig. 5.8. It should be noted that the response shown in this
figure holds only after sufficient time has elapsed for the nonperiodic term of Eq.
(5.24) to become negligible. For all practical purposes this term becomes negli-
gible after a time equal to about 37. If the response were desired beginning from
the time the bath temperature begins to oscillate, it would be necessary to plot
the complete response as given by Eq. (5.24).

SUMMARY

In this chapter several basic concepts and definitions of control theory have been
introduced. These include input variable, output variable, deviation variable,
transfer function, response, time constant, first-order system, block diagram, at-
tenuation, and phase lag. Each of these ideas arose naturally in the study of the
dynamics of the first-order system, which was the basic subject matter of the
chapter. As might be expected, the concepts will find frequent use in succeeding
chapters.

In addition to introducing new concepts, we have listed the response of
the first-order system to forcing functions of major interest. This information on

II
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Ultimate periodic responseUltimate periodic response
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FIGURE 5-8
Response of thermometer in Example 5.2.
FIGURE 5-8
Response of thermometer in Example 5.2.
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the dynamic behavior of the first-order system will be of significant value in the
remainder of our studies.

PROBLEMS
5.1. A thermometer having a time constant of 0.2 min is placed in a temperature bath,

and after the thermometer comes to equilibrium with the bath, the temperature of
the bath is increased linearly with time at a rate of l”/min.  What is the difference
between the indicated temperature and the bath temperature (a) 0.1 min, (b) 1.0
min after the change in temperature begins?
(c) What is the maximum deviation between indicated temperature and bath tem-

perature, and when does it occur?
(d)  Plot the forcing function and response on the same graph. After a long enough

time, by how many minutes does the response lag the input?
5.2. A mercury thermometer bulb is 4  in. long by b in. diameter. The glass envelope is

very thin. Calculate the time constant in water flowing at 10 ft/sec  at a temperature
of 100°F. In your solution, give a summary which includes
(a) Assumptions used
(b) Source of data
(c) Results

5.3. Given a system with the transfer function Y(s)/X(s)  = (Tls  + l)/(Tzs  + 1). Find
Y(r) if X(t) is a unit-step function. If Tl/T2  = 5, sketch Y(r) versus tlT2.  Show
the numerical values of minimum, maximum, and ultimate values that may occur
during the transient. Check these using the initial-value and final-value theorems of
Chap. 4.

5.4. A thermometer having first-order dynamics with a time constant of 1 min is placed
in a temperature bath at 100°F. After the thermometer reaches steady state, it is
suddenly placed in a bath at 110°F at t = 0 and left there for 1 min, after which it
is immediately returned to the bath at 100°F.
(a) Draw a sketch showing the variation of the thermometer reading with time.
(b) Calculate the thermometer reading at t = 0.5 min and at t = 2.0 min.

5.5. Repeat Prob. 5.4 if the thermometer is in the 110°F bath for only 10 sec.
5.6. A mercury thermometer, which has been on a table for some time, is registering the

room temperature, 75°F. Suddenly, it is placed in a 400°F oil bath. The following
data are obtained for the response of the thermometer.

llme,  set Thermometer reading, “F

0 75
1 107
2.5 140
5 205
8 244

1 0 282
1 5 328
30 385

Give two independent estimates of the thermometer time constant.
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5.7. Rewrite the sinusoidal response of a first-order system [Eq. (5.24)] in terms of a
cosine wave. Reexpress the forcing function [Eq. (5.19)] as a cosine wave, and
compute the phase difference between input and output cosine waves.

5.8. The mercury thermometer of Prob. 5.6 is again allowed to come to equilibrium in
the room air at 75°F. Then it is placed in the 400’F oil bath for a length of time less
than 1 set,  and quickly removed from the bath and reexposed to the 75°F ambient
conditions. It may be estimated that the heat-transfer coefficient to the thermometer
in air is one-fifth that in the oil bath. If 10 set  after the thermometer is removed
from the bath it reads 98”F, estimate the length of time that the thermometer was in
the bath.

5.9. A thermometer having a time constant of 1 min is initially at 50°C. It is immersed in
a bath maintained at 100°C at t = 0. Determine the temperature reading at t = 1.2
min.

5.10. In problem 5.9, if at t = 1.5 min, the thermometer is removed from the bath
and put in a bath at 75”C,  determine the maximum temperature indicated by the
thermometer. What will be the indicated temperature at t = 20 min?

5.11. A process of unknown transfer function is subjected to a unit-impulse input. The
output of the process is measured accurately and is found to be represented by the
function y(t) = te-‘. Determine the unit-step response of this process.



CHAPTER

6
PHYSICAL
EXAMPLES
OF FIRST-ORDER
SYSTEMS

In the first part of this chapter, we shall consider several physical systems that can
be represented by a first-order transfer function. In the second part, a method for
approximating the dynamic response of a nonlinear system by a linear response
will be presented. This approximation is called linearization.

EXAMPLES OF FIRST-ORDER SYSTEMS

Liquid Level
Consider the system shown in Fig. 6.1, which consists of a tank of uniform cross-
sectional area A to which is attached a flow resistance R such as a valve, a pipe,
or a weir. Assume that qO, the volumetric flow rate (volume/time) through the
resistance, is related to the head h by the linear relationship

A resistance that has this linear relationship between flow and head is referred
to as a linear resistance.” A time-varying volumetric flow 4 of liquid of constant
density p enters the tank. Determine the transfer function that relates head to flow.

*A pipe is a linear resistance if the flow is in the laminar  range. A specially contoured heir,
called a Sutro  weir, produces a linear head-flow relationship. Formulas used to prepare the shape of

64
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-i--&)(t) FIGURE61
Liquid-level system.

We can analyze this system by writing a transient mass balance around the
tank:

Mass flow in - mass flow out = rate of accumulation of mass in the tank

In terms of the variables used in this analysis, the mass balance becomes

Pm - pqm  = y

q(t)  - q&)  = A$ (6.2)

Combining Eqs.  (6.1) and (6.2) to eliminate qO(t)  gives the following linear
differential equation:

q-;=A$ (6.3)

We shall introduce deviation variables into the analysis before proceeding
to the transfer function. Initially, the process is operating at steady state, which
means that dhldt  = 0 and we can write Eq.  (6.3) as

where the subscript s has been used to indicate the steady-state value of the
variable.

Subtracting Eq.  (6.4) from Eq.  (6.3) gives

(4 - qs) = ;(h  - h,) + Adchd-  hs) (6.5)

such a weir have been mported  in the literature; & Soucek, Howe, and Mavis (1936). tibulent
flow through pipes and valves is generally proportional  to &. Flow through weirs having  simple
geometric shapes can be expressed as K/a”, where K and n are positive constants. For example, the
Bow  through  a rectangular-shaped weir is proportional to h”.
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If we define the deviation variables as

e=4-4s
H = h - h ,

Eq. (6.5) can be written

Q=;H+Az (6.6)

Taking the transform of Eq. (6.6) gives

Q(s)  =  ;H(s) +  ASH(S) (6.7)

Notice that H(0) is zero and therefore the transform of dH/dt  is simply sH(s).
Equation (6.7) can be rearranged into the standard form of the first-order

lag to give
H(s) R-
Q(s) 7s + 1 (6.8)

where r = AR.
In comparing the transfer function of the tank given by Eq. (6.8) with the

transfer function for the thermometer given by Eq. (5.7),  we see that Eq. (6.8)
contains the factor R. The term R is simply the conversion factor that relates h(t)
to q(t)  when the system is at steady state. For this reason, a factor K in the
transfer function Kl(rs  + 1) is often called the steady-state gain. We can readily
show this name to be appropriate by applying the final-value theorem of Chap.
4 to the determination of the steady-state value of H when the flow rate Q(t)
changes according to a unit-step change; thus

Q(t) = u(t)

where u(t) is the symbol for the unit-step change. The transform of Q(t) is

Q(s) = f

Combining this forcing function with Eq. (6.8) gives

H(s)  = f--&
Applying the final-value theorem, proved in Chap. 4, to H(s) gives

f-f(t) t--*m
=  liio[sH(s)]  =  liio  --& =  R

This shows that the ultimate change in H(t) for a unit change in Q(t) is simp-
ly R.

If the transfer function relating the inlet flow q(t)  to the outlet flow is
desired, note that we have from Eq. (6.1)
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(6.9)

Subtracting Eq. (6.9) from Eq. (6.1) and using the deviation variable Q, =
q. - qo,  gives

Qo = #

Taking the transform of Eq. (6.10) gives

Combining Eqs. (6.11) and (6.8) to eliminate H(s) gives

1Qo(s> _
Q(s) 7s + 1

(6.10)

(6.12)

Notice that the steady-state gain for this transfer function is dimensionless,
which is to be expected because the input variable q(t)  and the output variable
qO(t)  have the same units (volume/time).

The possibility of approximating an impulse forcing function in the flow rate
to the liquid-level system is quite real. Recall that the unit-impulse function is
defined as a pulse of unit area as the duration of the pulse approaches zero, the
impulse function can be approximated by suddenly increasing the flow to a large
value for a very short time; i.e. we may pour very quickly a volume of liquid
into the tank. The nature of the impulse response for a liquid-level system will
be described by the following example.

Example 6.1. A tank having a time constant of 1 min and a resistance of i ft/cfm
is operating at steady state with an inlet flow of 10 ft3/min.  At time t = 0, the flow
is suddenly increased to 100 ft3/min  for 0.1 min by adding an additional 9 ft3  of
water to the tank uniformly over a period of 0.1 min. (See Fig. 6.2 for this input
disturbance.) Plot the response in tank level and compare with the impulse response.

Before proceeding with the details of the computation, we should observe that,
as the time interval over which the 9 ft3  of water is added to the tank is shortened,
the input approaches an impulse function having a magnitude of 9.

From the data given in this example, the transfer function of the process is

H(s) 1 1- = - -
Q(s) 9s+l

The input may be expressed as the difference in step functions, as was done in
Example 4.5.

Q(t) = 90[u(t) - u(t - O.l)]

The transform of this is
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Combining this and the transfer function of the process, we obtain

i

1 .--0.1s

H(s) = 10 - - ~
s(s + 1) s(s + 1) i

(6.13)

The first term in Eq.  (6.13) can be inverted as shown in Eq. (5.12) to give
lO(  1 -em’). The second term, which includes e -O.ls,  must be inverted by use
of the theorem on translation of functions given in Chap. 4. According to this theo-
rem, the inverse of e-s’of(s)  is f(t - to)  with f(t)  = 0 for t - to < 0 or t < to.
The inverse of the second term in Eq. (6.13) is

L-1
.-0.1s

i J- =(J
s(s + 1)

for t < 0.1

= 10[1  - e-wl)] for t > 0.1

The complete solution to this problem, which is the inverse of Eq. (6.13),  is

H(f) = lO(1  - e-‘) t co.1

H(f) = lo((1 - e-‘) - [l - e-(‘-O.l)]} t >O.l
(6.14)

Simplifying the expression for H(t) for t > 0.1 gives

H(r) = l.O52e-’ t >O.l

From  Eq. (5.16),  the response of the system to an impulse of magnitude 9 is
given by

H(t)(hpd, =  (9)$e-’  =  eer

In Fig. 6.2, the pulse response of the liquid-level system and the ideal impulse
response are shown for comparison. Notice that the level rises very rapidly during the
0.1 min that additional flow is entering the tar& the level then decays exponentially
and follows very closely the ideal impulse response.

The responses to step and sinusoidal forcing functions are the same for the
liquid-level system as for the mercury thermometer of Chap. 5. Hence, they need

0 0.1 0.2t. min t. min

‘(4 ‘(b)
FIGURE 6-2
Approximation of an impulse function in a liquid-level system. (Example 6-l) (n)  pulse  input;
(b) response of tank level.
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not be rederived. This is the advantage of characterizing all first-order systems by
the same transfer function.

Liquid-Leml  Process with Constant-flow Outlet

An example of a transfer function that often arises in control systems may be
developed by considering the liquid-level system shown in Fig. 6.3. The resistance
shown in Fig. 6.1 is replaced by a constant-flow pump. The same assumptions
of constant cross-sectional ama  and constant density that were used before also
apply here. For this system, Eq. (6.2) still applies, but q(t)  is now a constant;
thus

q(t)  - qo  = A%

At steady state, Eq. (6.15) becomes

4s - 40 = 0 (6.16)

Subtracting Eq. (6.16) from Eq.  (6.15) and introducing the deviation variables
Q = q - qs and H = h - h,  gives

Q=Ag (6.17)

Taking the Laplace  transform of each side of Eq. (6.17) and solving for H/Q gives

H(s)  1
Q(s)  = As

(6.18)

Notice that the transfer function, l/As, in Eq. (6.18) is equivalent to integration.
One realizes this from the discussion on the transform of an integral presented in
Chap. 4. Therefore, the solution of Eq. (6.18) is

(6.19)

If a step change Q(r) = u(t) were applied to the system shown in Fig. 6.3 the
result is

h(t) = h,  + t/A (6.20)

The step response given by Eq. (6.20) is a ramp function that grows without
limit. Such a system that grows without limit for a sustained change in input is

q. = Constant FIGURE 6-3
Liquid-level system with constant flow outlet.
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said to have nonregulation. Systems that have a limited change in output for a
sustained change in input are said to have regulation. An example of a system
having regulation is the step response of a first-order  system, which is shown in
Fig. 5.6.

The transfer function for the liquid-level system with constant outlet flow
given by Eq. (6.18) can be considered as a special case of Eq. (6:!),  as R + Q).
The next example of a first-order system is a mixing process.

‘l., _.

Mixing Process

Consider the mixing process shown in Fig. 6.4 in which a stream of solution
containing dissolved salt flows at a constant volumetric flow rate q into a tank of
constant holdup volume V. The concentration of the salt in the entering stream,
x (mass of salt/volume), varies with time. It is desired to determine the transfer
function relating the outlet concentration y to the inlet concentration X.

Assuming the density of the solution to be constant, the flow rate in must
equal the flow rate out, since the holdup volume is fixed. We may analyze this
system by writing a transient mass balance for the salt; thus

Flow rate of salt in - flow rate of salt out
= rate of accumulation of salt in the tank

Expressing this mass balance in terms of symbols gives

qx - 4Y =
d(b)

dt

We shall again introduce deviation variables as we have in the previous
examples. At steady state, Eq. (6.21) may be written

qxs - 4Ys = 0 (6.22)

Subtracting Eq.  (6.22) from Eq. (6.21) and introducing the deviation variables

x = x - x ,

y=y-Ys

give

qx-qY = vg

y(t)
4

FIGURE 6-4
Mixing process.
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Taking the Laplace  transform of this expression and rearranging the result
give

Y(s) 1-=-
X(s) 7s + 1

(6.23)

where T = V/q.
This mixing process is, therefore, another first-order process, for which the

dynamics are  now well known. We next bring in an example from DC circuit
theory.

RC Circuit
Consider the simple RC circuit shown in Fig. 6.5 in which a voltage source v(t)
is applied to a series combination of a resistance R and a capacitance C. For
t < 0, v(t) = v,. Determine the transfer function relating et(t)  to v(t), where
et(t) is the voltage across the capacitor.

Applying Kirchhoff’s law, which states that in any loop the sum of voltage
rises [v(t) in this example] must equal the sum of the voltage drops, gives

v(t) = Ri(t) + $
I

i dt

Recalling that the current is the rate of change of charge with respect to time
, (coulombs per second), we may replace i by dqldt in Eq.  (6.24) to obtain

MO  1v(t) = R-dt + p(O

Since the voltage across the capacitance is given by the relationship

4e,  = -
c

(6.25)

(6.26)

the initial charge on the capacitor is simply

qs = Ce,,
Initially, when the circuit is at steady state and the capacitor is fully charged,

the voltage across the capacitor is equal to the source voltage v,; therefore, Eq.
(6.25) can be written for these steady-state conditions as

VS = $4.  = e,,

t RC circuit.
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Subtracting Eq. (6.27) from Eq. (6.25) and introducing the deviation vari-
ables

v=v-vvs

e=4-4s (6.28)

E, = e,  - e,,  = g

we obtain the result

or

V,Rdp,rs
dt C

V =RC%+E,

(6.29)

(6.30)

Taking the transform of Eq. (6.30) and rearranging the result give

E,(s) 1-=-
V(s) 7s + 1

(6.31)

where G-  = RC. Again we obtain a first-order transfer function.
The three examples that have been presented in this section are intended to

show that the dynamic characteristics of many physical systems can be represented
by a first-order transfer function. In the remainder of the book, more examples of
first-order systems will appear as we discuss a variety of control systems.

Summary
In each example of a first-order system, the time constant has been expressed in
terms of system parameters; thus

mC
r=hA

for thermometer, Eq. (5.5)
- .

7=AR for liquid-level process, Eq. (6.8)
VQ-Z-.- for mixing process, Eq. (6.23)
4

T=RC for RC circuit, Eq. (6.31)

LINEARIZATION
Thus far, all the examples of physical systems, including the liquid-level system of
Fig. 6.1, have been linear. Actually, most physical systems of practical importance
are nonlinear.

Characterization of a dynamic system by a transfer function can be done only
for linear systems (those described by linear differential equations). The conve-
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nience  of using transfer functions for dynamic analysis, which we have already
seen in applications, provides significant motivation for approximating nonlinear
systems by linear ones. A very important technique for such approximation is
illustrated by the following discussion of the liquid-level system of Fig. 6.1.

We now assume that the resistance follows the square-root relationship

q. = Ch’12 (6.32)

where C is a constant.
For a liquid of constant density and a tank of uniform cross-sectional area

A, a material balance around the tank gives

s(t)  - qo(t) = A$ (6.33)

Combining Eqs. (6.32) and (6.33) gives the nonlinear differential equation

q - Ch’Q  = f$ (6.34)

At this point, we cannot proceed as before and take the Laplace  transform.
This is owing to the presence of the nonlinear term h “*, for which them is no
simple transform. This difficulty can be circumvented as follows.X

By means of a Taylor-series expansion, the function q.(h) may be expanded
around the steady-state value h,; thus

q. = qO(h,) + q;(h,)(h - h,) + q:‘(h’);j  - hS)2  + ...

where qA(h,)  is the first derivative of q. evaluated at h S,  qi(h ,) the second
derivative, etc. If we keep only the linear term, the result is

qo = q&s)  + q:(k)(h  - h,) (6.35)

Taking the derivative of q. with respect to h in Eq. (6.32) and evaluating the
derivative at h = h, gives

q;(h;)  = (1/2)Ch;‘”

Introducing this into Eq. (6.35) gives

qo  = qo,  +‘$P - hs) (6.36)

where  qo,  = q&s)

(R1)-1 = &-h-l”
2 s

Substituting Eq. (6.36) into (6.33) gives

h - h,
9 - 40,  - ___

Rl
(6.37)
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At steady state the flow entering the tank equals the flow leaving the tank; thus

40 = 40, (6.38)
Introducing this last equation into Eq.  (6.37) gives

4 - 4s (6.39)

Introducing deviation variables Q = q - qs and H = h - h s into Eq. (6.39)
and transforming give

RIH(s)  =
Q(s) 7s + 1

(6.40)

where RI  = 2hi’2/C
T = RIA

We see that a transfer function is obtained that is identical in form with that of
the linear system, Eq. (6.8). However, in this case, the resistance RI depends on
the steady-state conditions around which the process operates. Graphically, the
resistance RI  is the reciprocal of the slope of the tangent line passing through
the point (gosh,)  as shown in Fig. 6.6. Furthermore, the linear approximation
given by Eq. (6.35) is the equation of the tangent line itself. From the graphical
representation, it should be clear that the linear approximation improves as the
deviation in h becomes smaller. If one does not have an analytic expression such
as h”2  for the nonlinear function, but only a graph of the function, the technique
can still be applied by representing the  function by the tangent line passing through
the point of operation.

Whether or not the linearized result is a valid representation depends on the
operation of the system. If the level is being maintained by a controller at or
close to a fixed level h S, then by the very nature of the control imposed on the
system, deviations in level should be small (for good control) and the linearized
equation is adequate. On the other hand, if the level should change over a wide
range, the linear approximation may be very poor and the system may deviate
significantly from the prediction of the linear transfer function. In such cases, it
may be necessary to use the more difficult methods of nonlinear analysis, some
of which are discussed in Chaps. 31 through 33. We shall extend the discussion
of linearization to more complex systems in Chap. 21.

h

FIGURE 6-6
Liquid-level system with nonlinear resistance.
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In summary, we have characterized, in an approximate sense, a nonlinear
system by a linear transfer function. In general, this technique may be applied
to any nonlinearity that can be expressed in a Taylor series (or, equivalently, has
a unique slope at the operating point). Since this includes most nonlinearities
arising in process control, we have ample justification for studying linear systems
in considerable detail.

PROBLEMS
6.1. Derive the transfer function H(s)lQ(s)  for the liquid-level system of Fig. P6.1 when

(a) The tank level operates about the steady-state value of h,  = 1 ft.
(b) The tank level operates about the steady-state value of hS = 3 ft.
The pump removes water at a constant rate of 10 cfm (cubic feet per minute); this
rate is independent of head. The cross-sectional area of the tank is 1.0 ft*  and the
resistance R is 0.5 ft/cfm.

FIGURE P6-1

6.2. A liquid-level system, such as the one shown in Fig. 6.1, has a cross-sectional area
of 3 .O ft*  . The valve characteristics are

q=8h

where  q = flow rate cfm
h = level above the valve, ft

Calculate the time constant for this system if the average operating level is
(a) 3 ft
(b) 9 ft

6.3. A tank having a cross-sectional area of 2 ft*  is operating at steady state with an
inlet flow rate of 2.0 cfm. The flow-head characteristics are shown in Fig. P6.3.
(a) Find the transfer function H(s)lQ(s).
(b) If the flow to the tank increases from 2.0 to 2.2 cfm according to a step change,

calculate the level h  two minutes after the change occurs.

0 . 3 1.0
heft FIGURE P6-3
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6.4. Develop a formula for finding the time constant of the liquid-level system shown
in Fig. P6.4 when the average operating level is h,.  The resistance R is linear. The
tank has three vertical walls and one which slopes at an angle (r from  the vertical
as shown. The distance separating the parallel walls is 1.

FIGURE I’64

6.5. Consider the stirred-tank reactor shown in Fig. M.5.  The reaction occurring is

A+B
and it proceeds at a rate

r = kc0

where r = moles A reacting/(volume)(time)
k = reaction velocity constant

C,(t) = concentration of A in reactor, moles/volume
V = volume of mixture in reactor

Further let F = constant feed rate, volume/time
Ci(t)  = concentration of A in feed S~~ZIIII

Assuming constant density and constant V, derive the transfer function relating
the concentration in the reactor to the feed-stteam  concentration. Prepare a block
diagram for the reactor. Sketch the response of the reactor to a unit-step change in C i.

6.6. A thermocouple junction of ama A, mass m, heat capacity C, and emissivity e is
located in a furnace that normally is at Z’i, “C. At these temperatures convective and
conductive heat transfer to the junction am negligible compared with radiative heat
transfer. Determine the linearized transfer function between the furnace temperature
Ti  and the junction temperature  To.  For the case

m = O.lg
c  =  o.12cal/(g#“c)
e = 0.7
A = O.lcm*

Ti, = llOO°C

plot the response of the thermocouple to a 10°C step change in furnace tempera-
ture. Compare this with the true response obtained by integration of the differential
equation.
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6.7. A liquid-level system has the following properties:
Tank dimensions: 10 ft high by 5 ft diameter
Steady-state operating characteristics:

Steady-state
lewl,  ft

0 0
5,ooo .I

10,ooo 1 .1
15,ooo 2.3
20,ooo 3.9
25,ooo 6.3
30,ooo 8.8

(a) Plot the level response of the tank under the following circumstances: The inlet
flow rate is held at 300 gal/mitt  for 1 hr and then suddenly raised to 400 gahmin.

(b)  How accurate is the steady-state level calculated from the dynamic response in
part (a) when compared with the value given by the table above?

(c) The tank is now connected in series with a second tank that has identical
operating characteristics, but which has dimensions 8 ft high by 4 ft diameter.
Plot the response of the original tank (which is upstream of the new tank) to
the change described in part (a) when the connection is such that the tanks are
(1) interacting, (2) noninteracting. (See Chap. 7.)

6.8. A mixing process may be described as follows: a stream with solute concentration
Ci (pounds/volume) is fed to a perfectly stirred tank at a constant flow rate of q
(volume/time). The perfectly mixed product is withdrawn from the tank, also at the
flow rate q at the same concentration as the material in the tank, C,. The total
volume of solution in the tank is constant at V. Density may be considered to be
independent of concentration.

A trace of the tank concentration versus time appears as shown in Fig. P6.8.
(a)  Plot on this same figure your best guess of the quantitative behavior of the inlet

concentration versus time. Be sum  to label the graph with quantitative informa-
tion regarding times and magnitudes and any other data that  will demonstrate
your understanding of the situation.

(b)  Write an equation for Ci as a function of time.

1 .8

BTime FIGURE Pti-8
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6.9.

Data: Tank dimensions: 8 ft high by 5 ft diameter

Tank volume VI 700 gal
Flow rate q: 100 gaYmin
Average density: 70 lb/ft3

The liquid-level process shown in Fig. P6.9 is operating at steady state when the
following disturbance occurs: at time t = 0, 1 ft3  water is added suddenly (unit
impulse) to the tank; at t = 1, 2 ft3  of water is added suddenly to the tank. Sketch
the response of the level in the tank versus time and determine the level at t = 0.5,
1, and 1.5.

10 cfm 7 r Disturbance

R = 0.5 FIGURE P6-9

6.10. A tank having a cross-sectional area of 2 ft2  and a linear resistance of R = 1 ft/cfm
is operating at steady state with a flow rate of 1 cfm. At time zero, the flow varies
as shown in Fig. P6.10.
(a) Determine Q(t) and Q(s) by combining simple functions. Note that Q is the

deviation in flow rate.
(b) Obtain an expression for H(t) where H is the deviation in level.
(c) Determine H(r) at r = 2 and t = 00.

f , min FIGURE P6-10

6.11. Determine Y(5) if Y(s) = ee3$/[s(7s  + l)].
6.12. Derive the transfer function H/Q for the liquid level system shown in Fig. P6.12.

The resistances are linear. H and Q are deviation variables. Show clearly how you
derived the transfer function. You are expected to give numerical values in the
transfer function.
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RI= 2 R2=5 FIGURE P6-12

6.13. The liquid-level system shown in Fig. P6.13 is initially at steady state with the inlet
flow rate at 1 cfm. At time zero, one ft3  of water is suddenly added to the tank;
at t = 1, one ft3  is added, etc. In other words, a train of unit impulses is applied
to the tank at intervals of one minute. Ultimately the output wave train becomes
periodic as shown in the sketch. Determine the maximum and minimum values of
this output.

Train of imwlses

R=l

H

H max-------~-~L$-J--J

Hmin  -
I I
I I
I I
I I

0 ,- n n+l n+2 n+3

FIGURE P6-13

6.14. The two-tank mixing process shown in Fig. P6.14 contains a recirculation loop that
transfers solution from tank 2 to tank 1 at a flow rate of (;Y  q o.
(a) Develop a transfer function that relates the concentration in tank 2, ~2,  to the

concentration in the feed, x; i.e. Cz(s)/X(s) where C2 and X are deviation
variables. For convenience, assume that the initial concentrations are x =
Cl = c2  = 0.

(b) If a unit-step change in x occurs, determine the time needed for c2  to reach 60
percent of its ultimate value for the cases where (Y  = 0, 1, and 00.

(c) Sketch the response for (Y  = 00.
Assume that each tank has a constant holdup volume of 1 ft3.  Neglect trans-

portation lag in the line connecting the tanks and the recirculation line. Try to answer
parts (b) and (c) by intuition.



CHAPTER

‘7
RESPONSE
OF FIRST-ORDER
SYSTEMS
IN SERIES

Introductory Remarks
Very often a physical system can be represented by several first-order processes
connected in series. To illustrate this type of system, consider the liquid-level
systems shown in Fig. 7.1 in which two tanks are arranged so that the outlet flow
from the first tank is the inlet flow to the second tank.

Two possible piping arrangements are shown in Fig. 7.1. In Fig. 7. la the
outlet flow from tank 1 discharges directly into the atmosphere before spilling into
tank 2 and the flow through R t depends only on h 1. The variation in h 2 in tank
2 does not affect the transient response occurring in tank 1. This type of system
is referred to as a noninteracting system. In contrast to this, the system shown
in Fig. 7. lb is said to be interacting because the flow through RI  now depends
on the difference between h 1 and h2. We shall consider first the noninteracting
system of Fig. 7.1~.

Noninteracting System
As in the previous liquid-level example, we shall assume the liquid to be of
constant density, the tanks to have uniform cross-sectional area, and the flow
resistances to be linear. Our problem is to find a transfer function that relates
h2 to 4, that is, Hz(s)lQ(s).  The approach will be to obtain a transfer function

80
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(4 lb)
FIGURE 7-1
‘Rvo-tank  liquid-level system: (a) noninteracting; (b) interacting.

for each tank, Qi(s)/Q(s)  and H2(s)/Qt(~),  by writing a transient mass balance
around each tank; these transfer functions will then be combined to eliminate the
intermediate flow Q i(s) and produce the desired transfer function.
A balance on tank 1 gives

(7.1)

A balance on tank 2 gives

(7.2)

The flow-head relationships for the two linear resistances are given by the
expressions

(7.3)

(7.4)

Combining Eqs.  (7.1) and (7.3) in exactly the same manner as was done in Chap.
dand introducing deviation variables give the transfer function for tank 1; thus

Ql<s> 1-=-
Q(s) 71s + 1 (7.5)

where QI = 41 - as, Q = q - qs, and  TI-=  Rl4.
In the same manner, we can combine Eqs.  (7.2) and (7.4) to obtain the

transfer function for tank 2; thus

Hz(s)  R2-=-

Ql<s> TZS + 1

where H2  = h2  - h2,  and 72  = R2A2.

(7.6)
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Having the transfer function for each tank, we can obtain the overall transfer
function H&)/Q(s)  by multiplying Eqs.  (7.5) and (7.6) to eliminate Q I(S):

H2(s) 1 R2-=--

Q(s) 71s + 172s  + 1 (7.7)

Notice that the overall transfer function of Eq.  (7.7) is the product of two
first-order transfer functions, each one of which is the transfer function of a
single tank operating independently of the other. In the case of the interacting
system of Fig. 7.lb,  the overall transfer function cannot be found by simply
multiplying together the separate transfer functions; this will become apparent
when the interacting system is analyzed later.

Example 7.1. l3vo noninteracting tanks am  connected in series as shown in Fig.
7. la. The  time constants are 72  = 1 and ~1 = 0.5; R2  = 1. Sketch the  response
of the level in tank 2 if a unit-step change is made in the inlet flow rate to tank 1.

The transfer function for this system is found directly from Eq.  (7.7); thus

Hz(s) R2_

Q(s) (71s  + l)(TP  + 1)

For a unit-step change in Q, we obtain

1
HZ(S)  = - R2

s (71s  + l)(qs  + 1)

(7.8)

(7.9)

Inversion by means of partial-fraction expansion gives

Hz(t) = R2  1
1

w!? 1 -t/q  _ 1e-t172- -
(
-e (7.10)

71-72  72 71

Substituting in the values of ~1,  n,  and R2  gives

Hz(t)  = 1 - (2e-’  - e-2t) (7.11)

A plot of this response is shown in Fig. 7.2. Notice that the response is S-shaped
and the slope dH2ldt  at origin is zero. If the change in flow rate were  introduced
into the second tank, the response would be first-order and is shown for comparison
in Fig. 7.2 by the dotted curve.

0 1 2 3 Tiansient  response of liquid-level system (Example
t 7.1).
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FIGURE 7-3
Noninteracting first-order systems.

Generalization for Several Noninteracting
Systems in Series
Having observed that the overall transfer function for two noninteracting first-order
systems connected in series is simply the product of the individual transfer func-
tions, we may now generalize by considering n noninteracting first-order systems
as represented by the block diagram of Fig. 7.3.

The block diagram is equivalent to the relationships

x,(s>=  kl
X0(s) 71s + 1

x,(s)  = kz
Xl(S) 72s + 1

. . . . . . . . . .

X”(S) kn-=-
xl-l(S) rns + 1

To obtain the overall transfer function, we simply multiply together the individual
transfer functions; thus

Xn(s) _ ’ki
X0(s) l-li=l7is  + l

(7.12)

From Example 7.1, notice that the step response of a system consisting of
two first-order systems is S-shaped and that the response changes very slowly
just after introduction of the step input. This sluggishness or delay is sometimes
called transfer lug and is always present when two or more first-order systems ate
connected in series. For a single first-order system, there is no transfer lag; i.e.,
the response begins immediately after the step change is applied, and the rate of
change of the response (slope of response curve) is maximal at t = 0.

In order to show how the transfer lag is increased as the number of stages
increases, Fig. 7.4 gives the unit-step response curves for several systems con-
taining one or more first-order stages in series.

Interacting System
To illustrate an interacting system, we shall derive the transfer function for the
system shown in Fig. 7.lb.  The analysis is started by writing mass balances on
the tanks as was done for the noninteracting case. The balances on tanks 1 and
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FIGURE 7-4FIGURE 7-4
Step response of noninteracting first-order systems.Step response of noninteracting first-order systems.

2 am the same as before and are given by Eqs. (7.1) and (7.2). However, the
flow-head relationship for tank 1 is now

4 1  =  &l - h 2 )

The flow-head relationship for R2 is the same as before and is expressed
by Eq. (7.4). A simple way to combine Eqs. (7.1),  (7.2),  (7.4),  and (7.13)
is to first express them in terms of deviation variables, transform the resulting
equations, and then combine the transformed equations to eliminate the unwanted
variables.

At steady state, Eqs. (7.1) and (7.2) can be written

4 s  - 4 1 ,  =  0 (7.14)

4 1 ,  - q2,  =  0 (7.15)

Subtracting Eq. (7.14) from Eq. (7.1) and Eq. (7.15) from Eq. (7.2) and
introducing deviation variables give

Q - Ql = AL% (7.16)

Ql - Q2 = AZ% (7.17)

Expressing Eqs. (7.13) and (7.4) in terms of deviation variables gives

Ql = HI -H2

Rl

(7.18)
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Transforming Eqs. (7.16) through (7.19) gives

Q(s) - Ql<s>  = AlsHl(s) (7.20)

Ql(s> - Qz(s) = A2sH2(~) (7.21)

RlQl(s)  = HI(S)  -  H2(s) (7.22)

R2Q20)  = H20) (7.23)

The analysis has produced four algebraic equations containing five unknowns:
(Q,  Q 1,  Q2,  HI, and Hz). These equations may be combined to eliminate Q 1, Q 2,
and Ht and arrive at the desired transfer function:

H2(S)  _ R2

Q(s) 71~2s2  + (q + r2  + AIR2)s  + 1
(7.24)

Notice that the product of the transfer functions for the tanks operating separately,
Eqs. (7.5) and (7.6),  does not produce the correct result for the interacting system.
The difference between the transfer function for the noninteracting system, Eq.
(7.7),  and the interacting system, Eq. (7.24),  is the presence of the term AlR2 in
the coefficient of s.

The term interacting is often referred to as loading. The second tank of Fig.
7.lb  is said to Eoad the first tank.

To understand the effect of interaction on the transient response of a system,
consider a two-tank system for which the time constants are equal (rt = 72 = 7).
If the tanks are noninteracting, the transfer function relating inlet flow to outlet
flow is

(7.25)

The unit-step response for this transfer function can be obtained by the usual
procedure to give

Q2(t) = 1 - e-t/r  - $-t/T
7

If the tanks sre  interacting, the overall transfer function, according to Eq. (7.24),
is (assuming further that Al = A9

Q2(s) 1- E
Q(s) 2-252  + 37s + 1

(7.27)

By application of the quadratic formula, the denominator of this transfer function
can be written as

Q2(s) 1- =
Q(s) (0.387s + 1)(2.62~s  + 1)

(7.28)
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For this example, we see that the effect of interaction has been to change the
effective time constants of the interacting system. One time constant has become
considerably larger and the other smaller than the time constant T of either tank
in the noninteracting system. The response of Qa(t) to a unit-step change in Q(t)
for the interacting case [Es.  (7.28)]  is

Q2(t)  = 1 + 0.17~~-~~.~*’  - 1.17e-m.62T (7.29)

In Fig. 7.5, the unit-step responses [Eqs.  (7.26) and (7.29)]  for the two
cases ate plotted to show the effect of interaction. From this figure, it can be seen
that interaction slows up the response. This result can be understood on physical
grounds in the following way: if the same size step change is introduced into the
two systems of Fig. 7.1, the flow from tank 1 (41) for the noninteracting case
will not be reduced by the increase in level in tank 2. However, for the interacting
case, the flow q1 will be reduced by the build-up of level in tank 2. At any time
tr following the introduction of the step input, q1 for the interacting case will be
less than for the noninteracting case with the result that h2 (or q2) will increase
at a slower rate.

In general, the effect of interaction on a system containing two first-order
lags is to change the ratio of effective time constants in the interacting system.
In terms of the transient response, this means that the interacting system is mom
sluggish than the noninteracting system.

This chapter concludes our specific discussion of first-order  systems. We
shall make continued use of the material developed here in the succeeding chap-

00 11 22 33
t/r --tt/r --t

FIGURE 7-5FIGURE 7-5
Effect of interaction on step  response of two-tank  system.Effect of interaction on step  response of two-tank  system.



RESPONSE OF FIRST-ORDER SYSTEMS IN SERIES 8 7

PROBLEMS
7.1. Determine the transfer function H(s)/Q(s)  for the liquid-level system shown in Fig.

W.  1. Resistances Rl and R2  ate  linear The flow rate from tank 3 is maintained
constant at b by means of a pump; i.e., the flow rate from tank 3 is independent of
head h.  The tanks are noninteracting.

FIGURE W-l

7.2. The mercury thermometer in Chap. 5 was considered to have all its resistance in the
convective film surrounding the bulb and all its capacitance in the mercury. A more
detailed analysis would consider both the convective resistance surrounding the bulb
and that between the bulb and mercury. In addition, the capacitance of the glass bulb
would be included. Let

Ai  = inside ama of bulb, for heat transfer to mercury
A0  = outside ama of bulb, for heat transfer from surrounding fluid
m = mass of mercury in bulb

rnb  = mass of glass bulb
C = heat capacity of mercury

Cb = heat capacity of glass bulb
hi  = convective coefficient between bulb and mercury
h,  = convective coefficient between bulb and surrounding fluid

T = temperature of mercury
Tb = temperature of glass bulb
Tf = temperature of surrounding fluid

Determine the transfer function between Tf and T. What is the effect of the
bulb resistance and capacitance on the thermometer response? Note that the inclusion
of the bulb results in a pair of interacting systems, which give an overall transfer
function somewhat different from  that of Eq. (7.24).

7.3. Them  are N storage tanks of volume V  arranged so that when water is fed into the
first tank, an equal volume of liquid overflows  from  the first tank into the second
tank, and so on. Each tank initially contains component A at some concentration CO
and is equipped with a perfect stirrer.  At time zero, a stream  of zero concentration is
fed into the first tank at a volumetric rate q. Find the resulting concentration in each
tank as a function of time.
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7.4. (a) Find the transfer functions Hz/Q and H$Q  for the three-tank system shown in
Fig. P7.4 where Hz, H3  and Q are deviation variables. Tank 1 and Tank 2 are
interacting.

(b) For a unit-step change in q (i.e., Q = l/s), determine H3(0), H3(w), and sketch
H3(t)  versus t.

4
A,= 1 A,= 1

- -2 -z- - - n ---= =- - z - . - a . - . . -
- - _ _ -

h2

RI= 2 R2=2

T a n k  1 T a n k  2 A3= 0.5
-z

I- =

h,

FIGURE W-4

R,= 4
*

T a n k  3

7.5. Three identical tanks are operated in series in a noninteracting fashion as shown in
Fig. P7.5. For each tank, R = 1, T = 1. If the deviation in flow rate to the first tank
is an impulse function of magnitude 2, determine
(a) An expression for H(s) where H is the deviation in level in the third tank.
(b) Sketch the response H(t).
(c) Obtain an expression for H(t).

FIGURE W-5
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7.6. In the two-tank mixing process shown in Fig. W.6, x varies from 0 lb salt/ft3  to 1
lb salt/ft3  according to a step function. At what time does the salt concentration in
tank 2 reach 0.6 lb salt/ft3?  The holdup volume of each tank is 6 ft3.

3ft3&in

/ /
‘C

-

FIGURE W-6
Tank 1 Tank 2

7.7. Starting from first principles, derive the transfer functions Hl(s)lQ(s)  and Hz(s)/Q(s)
for the liquid level system shown in Fig. P7.7. The resistances are linear and R1  =
R2 = 1. Note that two streams are flowing from tank 1, one of which flows into
tank 2. You are expected to give numerical values of the parameters in the transfer
functions and to show clearly how you derived the transfer functions.

q(t)
A,=2ft2

- -z- -- =- -

h,
R,=2 R,=l

Tank 1 A,=  lft2
- -zz--n-- =- -

h ,

R,=  1
>

Tank 2 FIGURE W-7
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8

HIGHER-ORDER
SYSTEMS:
SECOND-ORDER
AND TRANSPORTATION
LAG

SECOND-ORDER SYSTEM
lkansfer  Fhction
This section introduces a basic system called a second-order system or a quadratic
lug. A second-order transfer function will be developed by considering a classi-
cal example from mechanics. This is the damped vibrator, which is shown in
Fig. 8.1.

A block of mass Wresting on a horizontal, frictionless table is attached to a
linear spring. A viscous damper (dashpot) is also attached to the block. Assume
that the system is free to oscillate horizontally under the influence of a forcing
function F(t). The origin of the coordinate system is taken as the right edge of
the block when the spring is in the relaxed or unstretched condition. At time zero,
the block is assumed to be at rest at this origin. * Positive directions for force and
displacement are indicated by the arrows in Fig. 8.1.

Consider the block at some instant when it is to the right of Y = 0 and
when it is moving toward the right (positive direction). Under these conditions,

*In effect, this assumption makes the displacement variable Y(z)  a deviation variable. Also, the
assumption that the block is initially at rest permits derivation of the second-order transfer function
i n  i t s  standard  form. An ini t ial  veloci ty has the same effect  as  a  forcing function.  Hence,  this
assumption is in no way restrictive.

90
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FIGURE 8-l
Damped vibrator.

the position Y and the velocity df/dt  arc both positive. At this particular instant,
the following forces are acting on the block:

1. The force exerted by the spring (toward the left) of -KY where K is a positive
constant, called Hooke’s constant.

2. The viscous friction force (acting to the left) of -C  dY/dt,  where C is a positive
constant called the damping coefficient.

3. The external force F(t)  (acting toward the right).

Newton’s law of motion, which states that the sum of all forces acting on
the mass is equal to the rate of change of momentum (mass X acceleration), takes
the form

W d2Y- -
gc dt2

= -KY - Cg + F(t)

Rearrangement gives
W d2Y- -
gc dt2

+ C$+ + KY = F(t)

where W = mass of block, lb,
gc  = 32.2(lb,)(ft)/(lbf)(sec2)
C = viscous damping coefficient, lbf/(ft/sec)
K = Hooke’s constant, lbf/ft

F(t) = driving force, a function of time, lbf

Dividing Eq. (8.2) by K gives

W d2Y- -
g,K  dt2

+cd’iy = F(t)
K dt K

For convenience, this is written as

7
,d2Y
-@ + 2{‘%  + Y = X(t)

where

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)
W72 = -

gcK
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257 = 4

F(t)X(t) = 7

set

dimensionless

(8.6)

(8.7)

Solving for T and 5 from Eqs. (8.5) and (8.6) gives

(8.9)

By definition, both T and f must be positive. The reason for introducing T and f
in the particular form shown in Eq. (8.4) will become clear when we discuss the
solution of Eq. (8.4) for particular forcing functions X(t).

Equation (8.4) is written in a standard form that is widely used in control
theory. Notice that, because of superposition, X(t) can be considered as a forcing
function because it is proportional to the force F(t).

If the block is motionless (dYldt  = 0) and located at its rest position
(Y = 0) before the forcing function is applied, the Laplace  transform of Eq.
(8.4)  becomes

T*S*Y(S) +  25TSY(S)  +  Y ( S )  =  x ( S ) (8.10)

From this, the transfer function follows:

Y(s) 1- =
X(s) T*S*  + 267s  + 1

(8.11)

The transfer function given by Eq. (8.11) is written in standard form, and
we shall show later that other physical systems can be represented by a transfer
function having the denominator T*S*  + 2573  + 1. All such systems are defined
as second-order. Note that it requires two parameters, T and 5,  to characterize the
dynamics of a second-order system in contrast to only one parameter for a first-
order system. For the time being, the variables and parameters of Eq. (8.11) can
be interpreted in terms of the damped vibrator. We shall now discuss the response
of a second-order system to some of the common forcing functions, namely, step,
impulse, and sinusoidal.

Step Response
If the forcing function is a unit-step function, we have

X(s) = ;

In terms of the damped vibrator shown in Fig. 8.1 this is equivalent to suddenly
applying a force of magnitude K directed toward the right at time t = 0. This
follows from the fact that X is defined by the relationship X(t) = F(t)IK . Super-
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position will enable us to determine easily the response to a step function of any
other magnitude.

Combining Eq. (8.12) with the transfer function of Eq. (8.11) gives

Y(s) = 1
1

s T2S2  + 257s  + 1
(8.13)

The quadratic term in this equation may be factored into two linear terms
that contain the roots

s1  = -r+  -7 7
,y2 = -g- m

7 7

Equation (8.13) can now be written

1172
y(s)  = (s)(s  - Sl)(S  - s2)

(8.14)

(8.15)

(8.16)

The response of the system Y(t) can be found by inverting Eq. (8.16). The roots
sr  and s2  will be real or complex depending on the parameter 6.  The nature of
the roots will, in turn, affect the form of Y(t). The problem may be divided into
the three cases shown in Table 8.1. Each case will now be discussed.

CASE I STEP RESPONSE FOR 6 < 1. For this case, the inversion of Eq. (8.16)
yields the result

Y(f) = 1 - J&e-ct”sin  J-t  + tan-’
i

C-Ff
1

(8.17)

To derive Eq. (8.17),  use is made of the techniques of Chap. 3. Since 6 < 1,
Eqs. (8.14) to (8.16) indicate a pair of complex conjugate roots in the left-half
plane and a root at the origin. In terms of the symbols of Fig. 3.1, the complex
roots correspond to s:! and S;  and the root at the origin to Sg.
By referring to Table 3.1, we see that Y(t) has the form

Y(f) = Cl + e --5f’7 i C2 cos \/1_52$  + C3 sin 4-7;) (8.18)

The constants C 1,  C2,  and C3 are found by partial fractions. The resulting equation
is then put in the form of Eq. (8.17) by applying the trigonometric identity used

TABLE 8.1

CaSe 5 Nature of roots Description of response

I <I Complex Underdamped or oscillatory
I I = 1 Real and equal Critically damped

III >l Real Overdamped or nonoscillatory



94 L I N E A R  O P E N - L O O P  S Y S T E M S

in Chap. 5, Eq. (5.23). The details are left as an exercise for the reader. It is
evident from Eq. (8.17) that Y(t) --f  1 as t + ~0.

The nature of the response can be understood most clearly by plotting Eq.
(8.17) as shown in Fig. 8.2, where Y(t) is plotted against the dimensionless
variable t/r  for several values of {,  including those above unity, which will be
considered in the next section. Note that, for 4’ < 1, all the response curves are
oscillatory in nature and become less oscillatory as c is increased. The slope at
the origin in Fig. 8.2 is zero for all values of t.  The response of a second-order
system for 6 < 1 is said to be under-damped.

CASE II STEP RESPONSE FOR 5 = 1. For this case, the response is given by
the expression

Y(t) = 1 - (1 + ;,,-1, (8.19)

This is derived as follows: Equations (8.14) and (8.15) show that the roots st
and s2  are real and equal. Referring to Fig. 3.1 and Table 3.1, it is seen that

1.6

0.6

FIGURE 8-2
Response of a second-order system
to a unit-step forcing function.
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Eq. (8.19) is in the correct form. The constants are obtained, as usual, by partial
fractions.

The response, which is plotted in Fig. 8.2, is nonoscillatory. This condition,
b = 1, is called critical dumping and allows most rapid approach of the response
to Y = 1 without oscillation.

CASE III STEP RESPONSE FOR 5 > 1. For this case, the inversion of Eq.
(8.16) gives the result

Y(t) = 1 - e-@’
i

sinh ,@?$
i

(8.20)

where the hyperbolic functions are defined as

sinh a =
p - e-a

2

cash  a =
ea + eMa

2

The procedure for obtaining Eq. (8.20) is parallel to that used in the previous
cases.

The response has been plotted in Fig. 8.2 for several values of 5.  Notice that
the response is nonoscillatory and becomes more “sluggish” as 4’ increases. This
is known as an over-dumped response. As in previous cases, all curves eventually
approach the line Y = 1.

Actually, the response for f > 1 is not new. We met it previously in the
discussion of the step response of a system containing two first-order systems in
series, for which the transfer function is

Y(s) 1-=
X(s) (71s + l)(r*s + 1)

(8.21)

This is true for f > 1 because the roots sr  and ~2 are real, and the denominator
of Eq. (8.11) may be factored into two real linear factors. Therefore, Eq. (8.11)
is equivalent to Eq. (8.2 1) in this case. By comparing the linear factors of the
denominator of Eq. (8.11) with those of Eq. (8.21),  it follows that

71 = (l  + &T)r (8.22)

5-2 = ({ - JG)r (8.23)

Note that, if 71 = 72,  then r = rr  = 72  and l = 1. The reader should verify
these results.

Terms Used to Describe an Underdamped
System
Of these three cases, the underdamped response occurs most frequently in control
systems. Hence a number of terms are used to describe the underdamped response
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Response time

I
Response

t i m e

FIGURE 8-3
Terms used to describe an underdamped second-order response.

quantitatively. Equations for some of these terms are listed below for future ref-
erence. In general, the terms depend on 5 and/or r. All these equations can be
derived from the time response as given by Eq. (8.17); however, the mathematical
derivations are left to the reader as exercises.

1. Overshoot. Overshoot is a measure of how much the response exceeds the
ultimate value following a step change and is expressed as the ratio A/B  in
Fig. 8.3.

The overshoot for a unit step is related to 5 by the expression

1s

0.8

Overshoot = exp(-ml/  Jl - {*) (8.24)

This relation is plotted in Fig. 8.4. The overshoot increases for decreasing 4.

e&p
0.6 0.8

b

FIGURE 8-4
0 Characteristics of a step response of an

underdamped second-order system.
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2. Decay ratio. The decay ratio is defined as the ratio of the sizes of successive
peaks and is given by CIA in Fig. 8.3. The decay ratio is related to 4’ by the
expression

Decay ratio = exp(-2r[/  ,/g)  = (overshoot)* (8.25)

which is plotted in Fig. 8.4. Notice that larger 6 means greater damping, hence
greater decay.

3. Rise time. This is the time required for the response to first reach its ultimate
value and is labeled t ,.  in Fig. 8.3. The reader can verify from Fig. 8.2 that
t, increases with increasing 5.

4. Response time. This is the time required for the response to come within +5
percent of its ultimate value and remain there. The response time is indicated
in Fig. 8.3. The limits 55  percent are arbitrary, and other limits have been
used in other texts for defining a response time.

5. Period of oscillation. From Eq. (8.17),  the radian frequency (radians/time) is
the coefficient of t in the sine term; thus,

o,  radian frequency = J=F (8.26)
7

Since the radian frequency w is related to the cyclical frequency f by
w = 2~f,  it follows that

(8.27)

where T is the period of oscillation (time/cycle). In terms of Fig. 8.3, T is
the time elapsed between peaks. It is also the time elapsed between alternate
crossings of the line Y = 1.

6. Natural period of oscillation. If the damping is eliminated [C = 0 in Eq.
(8.1). or 5 = 01, the system oscillates continuously without attenuation in
amplitude. Under these “natural” or undamped conditions, the radian frequency
is l/r,  as shown by Eq. (8.26) when 5 = 0. This frequency is referred to as
the natural frequency wn:

The corresponding natural cyclical frequency f,, and period T, are related by
the expression

(8.29)

Thus, r has the significance of the undamped period.
From Eqs. (8.27) and (8.29),  the natural frequency is related to the actual

frequency by the expression
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which is plotted in Fig. 8.4. Notice that, for 5 < 0.5, the natural frequency is
nearly the same as the actual frequency.

In summary, it is evident that 5 is a measure of the degree of damping,
or the oscillatory character, and r is a measure of the period, or speed, of the
response of a second-order system.

Impulse Response
If a unit impulse s(t)  is applied to the second-order system, then from Eqs. (8.11)
and (4.1) the transform of the response is

Y(s) =
1

r*s* + 2lTS + 1 (8.30)

As in the case of the step input, the nature of the response to a unit impulse
will depend on whether the roots of the denominator of Eq. (8.30) are real or
complex. The problem is again divided into the three cases shown in Table 8.1,
and each is discussed below.

CASE I IMPULSE RESPONSE FOR 5 < 1. The inversion of Eq. (8.30) for
5 < 1 yields the result

(8.31)

which is plotted in Fig. 8.5. The slope at the origin in Fig. 8.5 is 1 .O for all
values of t.

0.8

0.6

FIGURE 8-5
Response of a second-order system
to a unit-impulse forcing function.
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A simple way to obtain Eq. (8.31) from the step response of Eq. (8.17) is
to take the derivative of Eq. (8.17). Comparison of Eqs. (8.13) and (8.30) shows
that

Y(S)limpulse  = SY(S)lstep (8.32)

The presence of s on the right side of Eq. (8.32) implies differentiation with
respect to t in the time response. In other words, the inverse transform of Eq.
(8.32) is

(8.33)

Application of Eq. (8.33) to Eq. (8.17) yields Eq. (8.31). This principle also
yields the results for the next two cases.

CASE II IMPULSE RESPONSE FOR C = 1. For the critically damped case, the
response is given by

Y(t) = ;tfe (8.34)

which is plotted in Fig. 8.5.

CASE III IMPULSE RESPONSE FOR 5 > 1. For the overdamped case, the
response is given by

Y(t) = 5 J&eit”sinh  Jmb

which is plotted in Fig. 8.5.

(8.35)

To summarize, the impulse-response curves of Fig. 8.5 show the same gen-
eral behavior as the step-response curves of Fig. 8.2. However, the impulse re-
sponse always returns to zero. Terms such as decay ratio, period of oscillation,
etc., may also be used to describe the impulse response. Many control systems
exhibit transient responses such as those of Fig. 8.5. This is illustrated by Fig.
1.7 for the stirred-tank heat exchanger.

Sinusoidal Response
If the forcing function applied to the second-order system is sinusoidal,

X(t) = Asin wt

then it follows from Eqs. (8.11) and (5.20) that

AU
y(s) = (9 + oJ*)(r*s*  + 257s  + 1)

The inversion of Eq. (8.36) may be accomplished by first factoring the two
quadratic terms to give

Y(s) =
AdT2

(s - jo)(s  + jw)(s  - sl)(s - ~2)
(8.37)
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Here ~1  and s2  are the roots of the denominator of the transfer function and
are given by Eqs. (8.14) and (8.15). For the case of an underdamped system
(t < l), the roots of the denominator of Eq. (8.37) are a pair of pure imaginary
roots (+jw, - jw) contributed by the forcin  function and a pair of complex
roots (--l/r  + j ,/m/r,  --c/r  - j J-91 - f2/r).  We may write the form of the
response Y(t) by referring to Fig. 3.1 and Table 3.1; thus

Y(t) = Cl cos wt + C2 sin wt + f~-~~” ( C3 cos J-5 + C4 sin A?;)

(8.38)

The constants are evaluated by partial fractions. Notice in Eq. (8.38) that, as
t + m,  only the first two terms do not become zero. These remaining terms are
the ultimate periodic solution; thus

ut>l f--*m  = Clcos  wt + C2sin wt (8.39)

The reader should verify that Eq. (8.39) is also true for 5 L 1. From this little
effort, we see already that the response of the second-order system to a sinusoidal
driving function is ultimately sinusoidal and has the same frequency as the driving
function. If the constants Cr and C2 are evaluated, we get from Eqs. (5.23) and
(8.39)

A
Y(t) =

[I  - (wT>*]*  + (2&07)2
sin (ot + 4) (8.40)

where

(#)  = -tan-’  2J-wr
1 - (wT)2

By comparing Eq. (8.40) with the forcing function

X(t) = Asin ot

it is seen that:

1. The ratio of the output amplitude to the input amplitude is

1

J[l  - (or)212  + (256JT)2

It will be shown in Chap. 16 that this may be greater or less than 1, depending
on 5 and or.  This is in’direct  contrast to the sinusoidal response of the first-
order system, where the ratio of the output amplitude to the input amplitude
is always less than 1.

2. The output lags the input by phase angle 1 $ I.  It can be seen from Eq. (8.40),
and will be shown in Chap. 16, that 1 4 I ppa roaches 180” asymptotically as o
increases. The phase lag of the first-order system, on the other hand, can never
exceed 90”. Discussion of other characteristics of the sinusoidal response will
be deferred until Chap. 16.
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We now have at our disposal considerable information about the dynamic
behavior of the second-order system. It happens that many control systems that
are not truly second-order exhibit step responses very similar to those of Fig.
8.2. Such systems are often characterized by second-order equations for approx-
imate mathematical analysis. Hence, the second-order system is quite important
in control theory, and frequent use will be made of the material in this chapter.

TRANSPORTATION LAG
A phenomenon that is often present in flow systems is the transportation Zag.
Synonyms for this term are dead time and distance velocity lag. As an example,
consider the system shown in Fig. 8.6, in which a liquid flows through an insulated
tube of uniform cross-sectional area A and length L at a constant volumetric flow
rate q. The density p and the heat capacity C are constant. The tube wall has
negligible heat capacity, and the velocity profile is flat (plug flow).

The temperature x of the entering fluid varies with time, and it is desired to
find the response of the outlet temperature y(t) in terms of a transfer function.

As usual, it is assumed that the system is initially at steady state; for this
system, it is obvious that the inlet temperature equals the outlet temperature; i.e.,

xs = Ys (8.41)

If a step change were made in x(t) at t = 0, the change would not be detected at
the end of the tube until r set later, where T is the time required for the entering
fluid to pass through the tube. This simple step response is shown in Fig. 8.7~.

If the variation in x(t) were some arbitrary function, as shown in Fig. 8.7b,
the response y(t) at the end of the pipe would be identical with x(t)  but again
delayed by r units of time. The transportation lag parameter r is simply the time
needed for a particle of fluid to flow from the entrance of the pipe to the exit, and
it can be calculated from the expression

volume of pipe
7=

volumetric flow rate

OI

A L
q-z  -

9
(8.42)

It can be seen from Fig. 8.7 that the relationship between y(t) and x(t) is

y(t) = x(t - 7) (8.43)

b i ,j ’ FIGURE 8-6
System with transportation lag.
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FIGURE 8-7
Response of transportation lag to
various inputs.

Subtracting Eq. (8.41) from (8.43) and introducing the deviation variables X =
x - x,  and Y = y - ys give

Y(r) = X(t - 7) (8.44)

If the Laplace  transform of X(t) is X(s), the Laplace  transform of X(t - 7)
is e-“‘X(s).  This result follows from the theorem on translation of a function,
which was discussed in Chap. 4. Equation (8.44) becomes

Y(s) = e-“‘X(s)

or

Y(s)
X(s)=e

--s7 (8.45)

Therefore, the transfer function of a transportation lag is e --s7.
The transportation lag is quite common in the chemical process industries

where a fluid is transported through a pipe. We shall see in a later chapter that
the presence of a transportation lag in a control system can make it much more
difficult to control. In general, such lags should be avoided if possible by placing
equipment close together. They can seldom be entirely eliminated.

APPROXIMATION OF TRANSPORT LAG. The transport lag is quite different
from the other transfer functions (first-order, second-order, etc.) that we have dis-
cussed in that it is not a rational function (i.e., a ratio of polynomials.) As shown
in Chap. 14, a system containing a transport lag cannot be analyzed for stability
by the Routh test. The transport lag is also difficult to simulate by computer as
explained in Chap. 34. For these reasons, several approximations of transport lag
that are useful in control calculations are presented here.

One approach to approximating the transport lag is to write e -”  as l/e’”
and to express the denominator as a Taylor series; the result is

e -rs= 1 1-
eTs 1 + rs  + r*s*/2  + r3s3/3!  + .‘..

Keeping only the first two terms in the denominator gives

-TS
1

e g-
1 + 7s

(8.46)
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This approximation, which is simply a first-order lag, is a crude approximation of
a transport lag. An improvement can be made by expressing the transport lag as

e-d2
e -7s = -

eTSl2

Expanding numerator and denominator in a Taylor series and keeping only terms
of first-order give

--7s 2:
1 - rsl2

e -
1 + rsl2

lst-order PadC (8.47)

This expression is also known as a jrst-order  Pad.4 approximation.
Another well known approximation for a transport lag is the second-order

Pad6  approximation:

--7s  2: 1 - rsl2  + r2s2/12
e -

1 + TSl2 + 72s2/12
2nd-order  Pad6 (8.48)

The step responses of the three approximations of transport lag presented here are
shown in Fig. 8.8. The step response of e e’s is also shown for comparison. Notice
that the response for the first-order Pad6 approximation drops to - 1 before rising
exponentially toward + 1. The response for the second-order Pad6 approximation
jumps to + 1 and then descends to below zero before returning gradually back
to +1.

Although none of the approximations for e -”  is very accurate, the approx-
imation for e -+ is more useful when it is multiplied by several first-order or
second-order transfer functions. In this case, the other transfer functions filter out
the high frequency content of the signals passing through the transport lag with
the result that the transport lag approximation, when combined with other transfer
functions, provides a satisfactory result in many cases. The accuracy of a transport
lag can be evaluated most clearly in terms of frequency response, a topic to be
covered later in this book.

FIGURE 8-8
Step response to approximations
of the transport lag e -“.
(1) U(TS  + l), (2) lst-order Pad&
(3) 2nd-order  Padt,  (4) CTS.
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PROBLEMS
8.1. A step change of magnitude 4 is introduced into a system having the transfer function

Y(s) 10-=
X(s) s*  + 1.6s +4

Determine
(a) Percent overshoot
(b) Rise time
(c) Maximum value of Y(t)
(d)  Ultimate value of Y(f)
(e) Period of oscillation

8.2. The two-tank system shown in Fig. P8.2 is operating at steady state. At time t = 0,
10 ft3  of water are quickly added to the first tank. Using appropriate figures and
equations in the text, determine the maximum deviation in level (feet) in both tanks
from the ultimate steady-state values and the time at which each maximum occurs.
Data:

AI =  A2 =  loft*

RI = 0.1 ft/cfm

R2 = 0.35ftlcfm

FIGURE PS-2

8.3. The two-tank liquid-level system shown in Fig. P8.3 is operating at steady state
when a step change is made in the flow rate to tank 1. The transient response is
critically damped, and it takes 1.0 min for the change in level of the second tank
to reach 50 percent of the total change.

If the ratio of the cross-sectional areas of the tanks is Al/A2  = 2, calculate
the ratio RI lR2. Calculate the time constant for each tank. How long does it take
for the change in level of the first tank to reach 90 percent of the total change?

FIGURE P8-3
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8.4. A mercury manometer is depicted in Fig. P8.4. Assuming the flow in the manometer
to be laminar and the steady-state friction law for drag force in laminar flow to apply
at each instant, determine a transfer function between the applied pressure p t and
the manometer reading h.  It will simplify the calculations if, for inertial terms,
the velocity profile is assumed to be flat. From your transfer function, written in
standard second-order form, list (a) the steady-state gain, (b) 7, and (c) 5. Comment
on these parameters as they are related to the physical nature of the problem.

p=o

FIGURE P8-4

8.5. Design a mercury manometer that will measure pressures up to 2 atm absolute and
will give responses that are slightly underdamped (that is, 5  = 0.7).

8.6. Verify Eqs. (8.17),  (8.19),  and (8.20).
8.7. Verify Eqs. (8.24) and (8.25).
8.8. Verify Eq. (8.40).
8.9. If a second-order system is overdamped, it is more difficult to determine the pa-

rameters 5  and T experimentally. One method for determining the parameters from
a step response has been suggested by R. C. Oldenbourg and H. Sartorius (The
Dynamics  of Automatic  Controls.  ASME,  p. 78, 1948), as described below.
(a) Show that the unit-step response for the overdamped case may be written in the

form
Q-r erlf

S(t) = 1 - rle 2
rl - r2

where rl and q are the (real and negative) roots of

T2S2  +  257s  + 1 = 0

(b) Show that S(t) has an inflection point at

lNr2/r  1)ti = ___
rl - r2

(c) Show that the slope of the step response at the inflection point

dS(f)
dt

=  S’(t;)
t=ti

has the value
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8.10.

8.11.

LINEAR OPEN-LOOP SYSTEMS

(6)  Show that the value of the step response at the inflection point is

S(ti)  = 1 +es ‘(ti)

and that hence

1 - S(ti) 1 1- -
S’(ti)  = -c  r2

(e) On a typical sketch of a unit-step response, show distances equal to

1

s’(ti)

and  1 -  s(ti)

s’(fi)

and hence present two simultaneous equations resulting from a graphical method
for determination of r 1  and r2.

(f)  Relate 5  and r to r 1  and r2.
Determine Y(O), Y(O.6),  and Y(m) if

1 25(s + 1)
y(s)  = ; s2  + 2s + 25

In the liquid-level system shown in Fig. P8.11, the deviation in flow rate to the
first tank is an impulse function of magnitude 5. The following data apply: Al  =
1 ft2,  A2 = A3 = 2 ft2,  R1  = 1 ft/cfm, R2  = 1.5 ft/cfm.
(a) Determine expressions for Ht(s),  Hz(s),  and H3(s) where HI, HZ,  and H3 are

deviations in tank level for tanks, 1, 2, and 3.
(b) Sketch the responses of HI(t),  Hz(t),  and H3(t).  (You need show only the

shape of the responses; do not plot.)

Q(t) =

Constant

FIGURE PS-11

f l ow
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(c) Determine Ht(3.46),  H2(3.46),  and Hj(3.46).  For H2 and H3, use graphs in
Chap. 8 of this text after first finding values of r and 5 for an equivalent
second-order system.

8.12. Sketch the response Y(t) if Y(s) = e -2s/[~2  + 1.2s + 11.  Determine Y(t) for
t = 0, 1,5,  and 00.

8.13. The two tanks shown in Fig. P8.13 are connected in an interacting fashion. The
system is initially at steady state with q = 10 cfm. The following data apply to the
tanks: Al  = 1 ft2,A2  = 1.25 ft2,Rt  = 1 ft/cfm,Rz  = 0.8 ft/cfm.
(a) If the flow changes from 10 to 11 cfm according to a step change, determine

Hz(s),  i.e., the Laplace  transform of Hz(t),  where H2 is the deviation in h2.
(b) Determine Hz(l),  HZ(~),  and H2(m).
(c) Determine the initial levels (actual levels) h  t(O) and h ~(0)  in the tanks.
(d)  Obtain an expression for HI(S) for the unit-step change described above.

41

FIGURE Ptt-13

8.14. From figures in your text, determine Y(4) for the system response expressed by

Y(S) = ads2  yo+8f  + 1

8.15. A step change of magnitude 3 is introduced into the transfer function

Y(s)/X(s)  = 10/[2s2  + 0.3s + 0.51

Determine the overshoot and the frequency of oscillation.
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CHAPTER

9
THECONTROL

SYSTEM

INTRODUCTION
In the previous chapters, the dynamic behavior of several basic systems was
examined. With this background, we can extend the discussion to a complete
control system and introduce the fundamental concept of feedback. In order to
work with a familiar system, the treatment will be based on the illustrative example
of Chap. 1, which is concerned with a stirred-tank heater.

Figure 9.1 is a sketch of the apparatus. To orient the reader, the physical
description of this control system will be reviewed. A liquid stream at a tempera-
ture 7’i  enters an insulated, well-stirred tank at a constant flow rate w (mass/time).
It is desired to maintain (or control) the temperature in the tank at TR  by means
of the controller. If the measured tank temperature T,,,  differs from the desired
temperature TR,  the controller senses the difference or error, E = TR  - T,,  and
changes the heat input in such a way as to reduce the magnitude of E. If the
controller changes the heat input to the tank by an amount that is proportional to
E , we have proportional control.

In Fig. 9.1, it is indicated that the source of heat input q may be electricity
or steam. If an electrical source were  used, the final control element might be a
variable transformer that is used to adjust current to a resistance.heating element;
if steam were used, the final control element would be a control valve that adjusts
the flow of steam. In either case, the output signal from the controller should
adjust q in such a way as to maintain control of the temperature in the tank.

1 1 1



FKxJRE 9-1
Control system for a stirred-tank
heater.

Components of a Control System
The system shown in Fig. 9.1 may be divided into the following components:

1. Process (stirred-tank heater).
2. Measuring element (thermometer).
3. Controller.
4. Final control element (variable transformer or control valve).

Each of these components can be readily identified as a separate physical
item in the process. In general, these four components will constitute most of
the control systems that we shall consider in this text; however, the reader should
realize that more complex control systems exist in which more components are
used. For example, there are some processes which require a cascade control
system in which two controllers and two measuring elements are used. A cascade
system is discussed in Chap. 18.

Block Diagram
For computational purposes, it is convenient to represent the control system of
Fig. 9.1 by means of the block diagram shown in Fig. 9.2. Such a diagram makes
it much easier to visualize the relationships among the various signals. New terms,
which appear in Fig. 9.2, are set point and loud. The set point is a synonym for
the desired value of the controlled variable. The load refers to a change in any
variable that may cause the controlled variable of the process to change. In this
example, the inlet temperature Z’i  is a load variable. Other possible loads for this
system are changes in flow rate and heat loss from the tank. (These loads are not
shown on the diagram.)

The control system shown in Fig. 9.2 is called a closed-loop system or a
feedback system because the measured value of the  controlled variable is returned
or “fed back” to a device called the comparator. In the comparator, the controlled
variable is compared with the desired value or set point. If there is any difference
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*CO”&ld
variable

FIGURE  9-2
Block diagram of a simple control system.

between the measured variable and the set point, an error is generated. This error
enters a controller, which in turn adjusts the final control element in order to
return the controlled variable to the set point.

Negative Bedback versus pbsitive  Feedback
Several terms have been used that may need further clarification. The feedback
principle, which is illustrated by Fig. 9.2, involves the use of the controlled vari-
able T to maintain itself at a desired value TR.  The arrangement of the apparatus
of Fig. 9.2 is often described as negative feedback to contrast with another ar-
rangement called positive feedback. Negative feedback ensures that the difference
between TR  and T,  is used to adjust the control element so that the tendency is
to reduce the error. For example, assume that the system is at steady state and
that T = T,,,  = TR.  If the load Ti should increase, T and T,,, would start to
increase, which would cause the error E to become negative. With proportional
control, the decrease in error would cause the controller and final control element
to decrease the flow of heat to the system with the result that the flow of heat
would eventually be reduced to a value such that T approaches TR.  A verbal de-
scription of the operation of a feedback control system, such as the one just given,
is admittedly inadequate, for this description necessarily is given as a sequence of
events. Actually all the components operate simultaneously, and the only adequate
description of what is occurring is a set of simultaneous differential equations.
This more accurate description is the primary subject matter of the present and
succeeding chapters.

If the signal to the comparator were obtained by adding TR  and T,, we
would have a positive feedback system, which is inherently unstable. To see that
this is true, again assume that the system is at steady state and that T = T,,, = TR.
If Ti were to increase, T and T,,,  would increase, which would cause the signal
the comparator (E  in Fig. 9.2) to increase, with the result that the heat to the
system would increase. However, this action, which is just the opposite of that
needed, would cause T to increase further. It should be clear that this situation
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would cause T to “run away” and control would not be achieved. For this reason,
positive feedback would never be used intentionally in the system of Fig. 9.2.
However, in more complex systems it may arise naturally. An example of this is
discussed in Chap. 21.

Servo Problem versus Regulator Problem
The control system of Fig. 9.2 can be considered from the point of view of its
ability to handle either of two types of situations. In the first situation, which is
called the servomechanism-type (or servo) problem, we assume that there is no
change in load Ti and that we are interested in changing the bath temperature
according to some prescribed function of time. For this problem, the set point TR
would be changed in accordance with the desired variation in bath temperature.
If the variation is sufficiently slow, the bath temperature may be expected to follow
the variation in TR  very closely. There are occasions when a control system in
the chemical industry will be operated in this manner. For example, one may be
interested in varying the temperature of a reactor according to a prescribed time-
temperature pattern. However, the majority of problems that may be described as
the servo type come from fields other than the chemical industry. The tracking of
missiles and aircraft and the automatic machining of intricate parts from a master
pattern are well-known examples of the servo-type problem. The other situation
will be referred to as the regulator problem. In this case, the desired value TR  is
to remain fixed and the purpose of the control system is to maintain the controlled
variable at TR in spite of changes in load Ti.  This problem is very common in the
chemical industry, and a complicated industrial process will often have many self-
contained control systems, each of which maintains a particular process variable
at a desired value. These control systems are of the regulator type.

In considering control systems in the following chapters, we shall frequently
discuss the response of a linear control system to a change in set point (servo
problem) separately from the response to a change in load (regulator problem).
However, it should be realized that this is done only for convenience. The basic
approach to obtaining the response of either type is essentially the same, and
the two responses may be superimposed to obtain the response to any linear
combination of set-point and load changes.

DEVELOPMENT OF BLOCK DIAGRAM
Each block in Fig. 9.2 represents the functional relationship existing between the
input and output of a particular component. In the previous chapters, such input-
output relations were developed in the form of transfer functions. In block-diagram
representations of control systems, the variables selected are deviation variables,
and inside each block is placed the transfer function relating the input-output pair
of variables. Finally, the blocks are combined to give the overall block diagram.
This is the procedure to be followed in developing Fig. 9.2.
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Process

Consider first the block for the process. This block will be seen to differ somewhat
from those presented in previous chapters in that two input variables are present;
however, the procedure for developing the transfer function remains the same.

An unsteady-state energy balance* around the tank gives

q + WC(Ti  - To)  - WC(T - To)  = PCVg (9.1)

where To is the reference temperature.
At steady state, dT/df  is zero, and Eq. (9.1) can be written

9s  + wC(Ti,  - To)  - wC(T~ - To)  = 0 (9.2)

where the subscript s has been used to indicate steady state.
Subtracting Eq. (9.2) from Eq. (9.1) gives

4 - 9s  + wC[(Ti  - Ti,)  - (T - Ts)l  = PCV
d(T - Ts)

dt (9.3)

Notice that the reference temperature T, cancels in the subtraction. If we
introduce the deviation variables

T/ = Ti  - Ti, (9.4)

Q=s-4s (9.5)
T’= T - T , (9.6)

Eq. (9.3) becomes

Q + wC(T;  - T’) = ,CVg (9.7)

Taking the Laplace  transform of Eq. (9.7) gives

Q(s) + wC[T,‘(s)  - T’(s)] = pCVsT’(s) (9.8)

o r

Q(s)
=  - +  T;(s)

W C
(9.9)

*In this analysis, it is assumed that the flow rate of heat q is instantaneously available and independent
of the temperature in the tank. In some stirred-tank heaters, such as a jacketed kettle, q depends on
both the temperature of the fluid in the jacket and the temperature of the fluid in the kettle. In this
introductory chapter, systems (electrically heated tank or direct steam-heated tank) are selected for
which this complication can be ignored. In Chap. 21, the analysis of a steam-jacketed kettle is given
in which the effect of kettle temperature on q is taken into account.
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This last expression can be written

(9.10)

where

If there is a change in Q(t) only, then T,‘(t) = 0 and the transfer function
relating T’ to Q is

T’(s)= l/WC
Q(s) 7s + 1 (9.11)

If there is a change in T;(t) only, then Q(t) = 0 and the transfer function relating
T’  to T/  is

T’(s) 1_
I;:‘(s) 7s + 1

(9.12)

Equation (9.10) is represented by the block diagram shown in Fig. 9.3~.
This diagram is simply an alternate way to express Eq.  (9.10) in terms of the
transfer functions of Eqs.  (9.11) and (9.12). Superposition makes this representa-
tion possible. Notice that, in Fig. 9.3, we have indicated summation of signals by
the symbol shown in Fig. 9.4, which is called a summing junction. Subtraction
can also be indicated with this symbol by placing a minus sign at the appropriate
input. The summing junction was used previously as the symbol for the compara-
tor of the controller (see Fig. 9.2). This symbol, which is standard in the control
literature, may have several inputs but only one output.

A block diagram that is equivalent to Fig. 9.3~  is shown in Fig. 9.3b.  That
this diagram is correct can be seen by rearranging Eq. (9.10); thus

T’(s) = [Q(s) + wCT;(s)]~ (9.13)

(a) (b)
FIGURE 9-3
Block diagram for process.



THJ3  CONTROL SYSTEM 117

In Fig. 9.3b, the input variables Q(S)  and wCT/(s) am  summed before being
operated on by the transfer function llwCl(~s  + 1).

The physical situation that exists for the control system (Fig. 9.1) if steam
heating is used requires more  careful analysis to show that Fig. 9.3 is an equivalent
block diagram. Assume that a supply of steam at constant conditions is available
for heating the tauk.  One method for introducing heat to the system is to let the
steam flow through a control valve and discharge directly into the water in the
tank, where it will condense completely and become part of the stream leaving
the tank (see Fig. 9.5).

If the flow of steam, f (pounds/time), is small compared with the inlet flow
w, the total outlet flow is approximately equal to w. When the system is at steady
state, the heat balance may be written

WC(Tj,  - T,)  - wC(T,  - To)  + f,(H, - HI,) =  0 (9.14)

where To  = reference temperature used to evaluate enthalpy of all streams en-
tering and leaving tank

H, = specific enthalpy of the steam supplied, a constant
HI, = specific enthalpy of the condensed steam flowing out at T,,  as part

of the total stream

The term HI, may be written in terms of heat capacity and temperature; thus

Hr, = C(Ts  - To) (9.15)

From this, we see that, if the steady-state temperature changes, HI, changes.
In Eq. (9.14),  f,(H, - HI,)  is equivalent to the steady-state input qs used pre-
viously, as can  be seen by comparing Eq. (9.2) with (9.14).

Now consider an unsteady-state operation in whichfis much less than w and
the temperature T of the bath does not deviate significantly from the steady-state

LWI Ti  -+
tI!F
-- ---.-‘;- -.

T
w+fYw

Steam at
constant
conditions

FIGURE 9-5
Supplying heat by steam.
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temperature T,.  For these conditions, we may write the unsteady-state balance
approximately; thus

wC(Tj  - To)  - wC(T  - To)  + f(Hg - HI,)  = pCVs (9.16)

In a practical situation for steam, H, will be about 1000 Btu/lb,.  If the tempera-
ture of the bath, T, never deviates from T, by more than loo, the error in using the
term f(Hg - HI,)  instead of f(Hg - HI)  will be no more than 1 percent. Under
these conditions, Eq. (9.16) represents the system closely, and by comparing Eq.
(9.16) with Eq. (9. l), it is clear that

q = fW,  -HI,) (9.17)

Therefore, q is proportional to the flow of steam f, which may be varied by
means of a control valve. It should be emphasized that the analysis presented
here is only approximate. Both f and the deviation in T must be small. The
smaller they become, the more closely Eq. (9.16) represents the actual physical
system. An exact analysis of the problem leads to a differential equation with
time-varying coefficients, and the transfer-function approach does not apply. The
problem becomes considerably more difficult. A better approximation will be
discussed in Chap. 21, where linearization techniques ate used.

Measuring Element
The temperature-measuring element, which senses the bath temperature T and
transmits a signal T,,, to the controller, may exhibit some dynamic lag. From
the discussion of the mercury thermometer in Chap. 5, we observed this lag to
be first-order. In this example, we shall assume that the temperature-measuring
element is a first-order system, for which the transfer function is

T,i,(s) 1=-
T’(s) 7,s  + 1

(9.18)

where the input-output variables T’ and TA are deviation variables, defined as

T’= T - T ,
T; = T,,, - T,,,,

Note that, when the control system is at steady state, T, = Tm,  , which means that
the temperature-measuring element reads the true bath temperature. The transfer
function for the measuring element may be represented by the block diagram
shown in Fig. 9.6.
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Controller and Fhal  Control Element
For convenience, the blocks representing the controller and the final control ele-
ment are combined into one block. In this way, we need be concerned only with
the overall response between the error and the heat input to the tank. Also, it is
assumed that the controller is a proportional controller. (In the next chapter, the
response of other controllers, which are commonly used in control systems, will
be described.) The relationship for a proportional controller is

q = K,E+A (9.19)

where E = TR - T,,,
TR = set-point temperature
K, = proportional sensitivity or controller gain
A = heat input when E =  0

At steady state, it is assumed* that the set point, the process temperature,
and the measured temperature are all equal to each other; thus

TR,  = T,  = T,, (9.20)

Let E’ be the deviation variable for error; thus

E’ = E-E, (9.21)

where E, = TR, - Tm,
Since TR,  = T,,,,,  E, = 0 and Eq. (9.21 becomes

E’ =E-(-J=E (9.22)

This result shows that E is itself a deviation variable.
Since E, = 0, Eq. (9.19) becomes at steady state

qs = Kcc,  + A = 0 + A = A

Equation (9.19) may now be written in terms of qs; thus

q = Kc6  + qs

or

Q = K,E (9.23)

where Q = q - qs
The transform of Eq. (9.23) is simply

Q(s) = K,E(s) (9.24)

*In a practical situation, the equality among the three variables, T,  T,,,,  and TR,  at steady state as
given by Eq. (9.20) can always be established by adjustment of the instruments. The equality between
T and T, can be achieved by calibration of the measuring element. The equality between T,,,  and
TR  can be achieved by adjustment of the proportional controller.
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-I FIGURE 9-7
T;(s) Block diagram of proportional controller.

Note that E, which is also equal to E ‘,  may be expressed as

E = TR  - TR,  - (T,  - T,,) (9.25)
or

E = T; - T; (9.26)
Equation (9.25) follows from the definition of E and the fact that TR,  = T,,,,.
Taking the transform of Eq. (9.26) gives

E(S) = T;(s)  - T;(s) (9.27)
The transfer function for the proportional controller given by Eq. (9.24) and the
generation of error given by EQ. (9.27) may be expressed by the block diagram
shown in Fig. 9.7.

We have now completed the development of the separate blocks. If these
are combined according to Fig. 9.2, there is obtained the block diagram for the
complete control system shown in Fig. 9.8. The reader should verify this figure.

SUMMARY
It has been shown that a control system can be translated into a block diagram that
includes the transfer functions of the various components. It should be empha-
sized that a block diagram is simply a systematic way of writing the simultaneous
differential and algebraic equations that describe the dynamic behavior of the
components. In the present case, these were Eqs.  (9.10),  (9.18),  and (9.24) and
the definition of E. The block diagram clarifies the relationships among the vari-
ables of these simultaneous equations. Another advantage of the block-diagram
representation is that it clearly shows the feedback relationship between measured
variable and desired variable and how the difference in these two signals (the

A?-
T-r+1

T’(s)

1

Cl
7,.9+1 FIGURE 9-8

Block diagram of control system.
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error E) is used to maintain control. A set of equations generally does not clearly
indicate the relationships shown by the block diagram.

In the next several chapters, tools will be developed that will enable us to
reduce a block diagram such as the one in Fig. 9.8 to a single block that relates
T’(s) to Ti or TA.  We shall then obtain the transient response of the control system
shown in Fig. 9.8 to some specific changes in Td and T(. However, we shall first
pause in Chap. 10 to look more carefully at the controller and control element
blocks, which have been skimmed over in the present chapter.

PROBLEMS
9.1. The two-tank heating process shown in Fig. P9.1 consists of two identical, well-

stirred tanks in series. A flow of heat can enter tank 2. At time t = 0, the flow
rate of heat to tank 2 suddenly increases according to a step function to 1000
Btu/min,  and the temperature of the inlet water Ti  drops from 60°F to 52’F  accord-
ing to a step function. These changes in heat flow and inlet water temperature occur
simultaneously.
(a) Develop a block diagram that relates the outlet temperature of tank 2 to the inlet

temperature to tank 1 and the flow of heat to tank 2.
(b) Obtain an expression for T;(s)  where T{  is the deviation in the temperature of

tank 2. This expression should contain numerical values of the parameters.
(c)  Determine TX(~)  and TV.
(d)  Sketch the response T;(t) versus t.

Initially, Ti  = Tt  = 7”~  = 60’F  and q = 0. The following data apply:

w = 250 Ib/min
holdup volume of each tank = 5 ft3
density of fluid = 50 lb/ft3
heat capacity of fluid = 1 Btu/(lb)  (OF)

w
T,

4

TI _ w
/ / T2

Tank1 Tank2 FIGURE I’!b1

9.2. The two-tank heating process shown in Fig. P9.2 consists of two identical, well-
stirred tanks in series. At steady state, T, = Tt,  = 60’F. At time t = 0, the
temperature of each stream, entering the tanks changes according to a step function,
i.e., Ti = lOu(t), TL  = 20u(t)  where Lrd  and TL  are deviation variables.
(a) Develop the block diagram that relates Z’;, the deviation in temperature in tank

2, to TA  and Td.
(b) Obtain an expression for T;(s).
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Tank 1 Tank 2

(c) Determine 2’2(2).
The following data apply:

WI  = w2 = 250 lb/min
Holdup volume of each tank = 10 ft3
Density of fluid = 50 lb/ft3
Heat capacity of fluid = 1 Btu/(lb)(‘F)

/
I-

T2

WJ  = w1+  w2

FIGURE P9-2

9.3. The heat transfer equipment shown in Fig. P9.3 consists of two tanks, one nested
inside the other. Heat is transferred by convection through the wall of the inner tank.
The contents of each tank are well mixed. The following data and information apply:

1. The holdup volume of the inner tank is 1 ft3.  The holdup of the outer tank is 1
ft3.

2. The cross-sectional area for heat transfer between the tanks is 1 ft2.
3. The overall heat transfer coefficient for the flow of heat between the tanks is 10

Btu/(hr)(ft*)(“F).
4. The heat capacity of fluid in each tank is 1 Btu/(lb)(‘F). The density of each fluid

is 50 lb/ft3.

Initially the temperatures of the feed stream to the outer tank and the contents
of the outer tank are equal to 100% The contents of the inner tank are initially at
lOOoF.  At time zero, the flow of heat to the inner tank (Q) is changed according to
a step change from 0 to 500 Btu/hr.
(a) Obtain an expression for the Laplace  transform of the temperature of the inner

tank, T(s).
(b) Invert T(s)  and obtain T for time = 0, 5 hr, 10 hr,  and 00.

Q ,  I n n e r  t a n k

1 0  Ib/hr -1 1 /

l-k--L  Outertank

L FIGURE P!h3



CHAPTER

10
CONTROLLERS

AND FINAL
CONTROL
ELEMENTS

In the previous chapter, the block-diagram representation of a simple control sys-
tem (Fig. 9.2) was developed. This chapter will focus attention on the controller
and final control element and discuss the dynamic characteristics of some of these
components that are in common use. As shown in Fig. 9.2, the input signal to
the controller is the error and the output signal of the controller is fed to the final
control element. In many process control systems, this output signal is au air
pressure and the final control element is a pneumatic valve that opens and closes
as air pressure on the diaphragm changes.

For the mathematical analysis of control systems, it is sufficient to regard
the controller as a simple computer. For example, a proportional controller may
be thought of as a device that receives the error signal and puts out a signal pro-
portional to it. Similarly, the final control element may be regarded as a device
that produces corrective action on the process. The corrective action is regarded
as mathematically related to the output signal from the controller. However, it is
desirable to have some appreciation of the actual physical mechanisms used to
accomplish this. For this reason, we begin this chapter with a physical descrip-
tion of a pneumatic control valve and a simplified description of a proportional
controller.

Up to about 1960, most controllers were pneumatic. Although pneumatic
controllers are still in use and function quite well in many installations, the con-
trollers being installed today are electronic or computer-based instruments. For this
reason, the proportional controller to be discussed in this chapter will be electronic

1 2 3
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or computer-based. The transfer functions that are presented in this chapter apply
to either type of controller, and the discussion is in no way restrictive.

After the introductory discussion, transfer functions will be presented for
simplified or idealized versions of the control valve and the conventional con-
trollers. These transfer functions, for practical purposes, will adequately represent
the dynamic behavior of control valves and controllers. Hence, they will be used
in subsequent chapters for mathematical analysis and design of control systems.

MECHANISMS
Control Valve
The control valve shown in Fig. 10.1 contains a pneumatic device (valve motor)
that moves the valve stem as the pressure on a spring-loaded diaphragm changes.
The stem positions a plug in the orifice of the valve body. As the pressure in-
creases, the plug moves downward and restricts the flow of fluid through the valve.
This action is referred to as air-to-close. The valve may also be constructed to
have air-to-open action. Valve motors are often constructed so that the valve stem
position is proportional to the valve-top pressure. Most commercial valves move
from fully open to fully closed as the valve-top pressure changes from 3 to 15 psig.

In general, the flow rate of fluid through the valve depends upon the upstream
and downstream fluid pressures and the size of the opening through the valve. The
plug and seat (or orifice) can be shaped so that various relationships between stem
position and size of opening (hence, flow rate) are obtained. In our example, we
shall assume for simplicity that at steady state the flow (for fixed upstream and
downstream fluid pressures) is proportional to the valve-top pneumatic pressure.
A valve having this relation is called a linear valve. An extensive discussion of
control valves is presented in Chap. 20.

Controller
The control hardware required to control the temperature of a stream leaving a heat
exchanger is shown in Fig. 10.2. This hardware, available from manufacturers of

FIGURE  10-1
Pneumatic control valve (air-to-close).
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Hot process stream

un i t
( thermocouple)

FIGURE 10-2
Schematic diagram of control system.

such equipment, consists of the following components listed here along with their
respective conversions:

Transducer (temperature to current).
Controller-recorder (current to current).
Converter (current to pressure).
Control valve (pressure to flow rate).

Figure 10.2 shows that a thermocouple is used to measure the temperature;
the signal from the thermocouple is sent to the transducer, which produces an
output in the range of 4-20 ma, which is a linear function of the input. The
output of the transducer enters the controller where it is compared to the set point
to produce an error signal. The controller converts the error to an output in the
range of 4-20 ma according to the control law stored in the memory of the com-
puter. The only control law we have considered so far has been proportional.
Later in this chapter other control laws will be described. The output of the con-
troller enters the converter, which produces an output in the range of 3-15 psig,
which is a linear function of the input. Finally, the output of the converter is sent
to the top of the control valve, which adjusts the flow of cooling water to the
heat exchanger. We shall assume that the valve is linear and is the pressure-to-
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open type. The external power (120 V) needed for each component is also shown
in Fig. 10.2. Electricity is needed for the transducer, controller, and converter. A
source of 20 psig air is needed for the converter.

To see how the components interact with each other, consider the process to
be operating at steady state with the outlet temperature equal to the set point. If
the temperature of the hot process stream increases, the following events occur:
After some delay the thermocouple detects an increase in the outlet temperature
and produces a proportional change in the signal to the controller. As soon as the
controller detects the rise in temperature, relative to the set point, the controller
output increases according to proportional action. The increase in signal to the
converter causes the output pressure from the converter to increase and open the
valve wider in order to admit a greater flow of cooling water. The increased flow
of cooling water will eventually reduce the output temperature and move it toward
the set point. From this qualitative description, we see that the flow of signals
from one component to the next is such that the temperature of the heat exchanger
should return toward the set point. In a well-tuned control system, the response of
the temperature will oscillate around the set point before coming to steady state.
We shall give considerable attention to the transient response of a control system
in the remainder of this book. Further discussion will also be given on control
valves in Chap. 20 and on controllers in Chap. 35.

For convenience in describing various control laws (or algorithms) in the
next part of this chapter, the transducer, controller, and converter will be lumped
into one block as shown in Fig. 10.3.

This concludes our brief introduction to valves and controllers. We now
present transfer functions for such devices. These transfer functions, especially for
controllers, are based on ideal devices that can be only approximated in practice.
The degree of approximation is sufficiently good to warrant use of these transfer
functions to describe the dynamic behavior of controller mechanisms for ordinary
design purposes.

Transducer

X-
measured
var iab le

Cont ro l le r

(a)

Converter

si
-P

“Controller”

x - l - l -, I

(b)
FIGURE 10-3
Equivalent block for transducer, controller, and converter.
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IDEAL TRANSFER FUNCTIONS

Control Vale

A pneumatic valve always has some dynamic lag, which means that the stem
motion does not respond instantaneously to a change in the applied pressure from
the controller. From experiments conducted on pneumatic valves, it has been
found that the relationship between flow and valve-top pressure for a linear valve
can often be represented by a first-order transfer function; thus

Q(s) Kv-=-
P(s) 7,s  + 1

where K, is the steady-state gain, i.e., the constant of proportionality between
steady-state flow rate and valve-top pressure, and T”  is the time constant of the
valve.

In many practical systems, the time constant of the valve is very small when
compared with  the time constants of other components of the control system, and
the transfer function of the valve can be approximated by a constant

Q(s)  - K
P(s)  "

Under these conditions, the valve is said to contribute negligible dynamic lag.
To justify the approximation of a fast valve by a transfer function, which

is simply K,, consider a first-order valve and a first-order process connected in
series, as shown in Fig. 10.4.

According to the discussion of Chap. 7, if we assume no interaction, the
transfer function from P(s) to Y(s) is

Y(s) K,KP-
P(s) (7,s  + l)(rps  + 1)

The assumption of no interaction is generally valid for this case.
For a unit-step change in P,

y,’ K,KP

s (7”s  + l)(rps  + 1)

the inverse of which is

Y(t) = (K,Kp+  - -$$/“”  - ;e-“Tp)]

Valva

+Z--~~~;:lM Block diagram for a first-order valve and a first-order
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If r,,  4~  rp, this equation is approximately

Y(t) = K,Kp(l  - e-‘+)

The last expression is the unit-step response of the transfer function

Y(s)
-=

P(s)

K KP

“TpS  + 1

so that the combination of process and valve is essentially first-order. This clearly
demonstrates that, when the time constant of the valve is much smaller than that
of the process, the valve transfer function can be taken as K,.

A typical pneumatic valve has a time constant of the order of 1 sec. Many
industrial processes behave as first-order systems or as a series of first-order sys-
tems having time constants that may range from a minute to an hour. For these
systems we have shown that the lag of the valve is negligible, and we shall make
frequent use of this approximation.

Controllers

In this section, we shall present the transfer functions for the controllers frequently
used in industrial processes. Because the transducer and the converter will be
lumped together with the controller for simplicity, the result is that the input will
be the measured variable x (e.g. temperature, level, etc.) and the output will be
a pneumatic signal p. (See Fig. 10.3) Actually this form (X as input and p as
output) applies to a pneumatic controller. For convenience, we shall refer to the
lumped components as the controller in the following discussion, even though the
actual electronic controller is but one of the components.

PROPORTIONAL CONTROL. The proportional controller produces an output sig-
nal (pressure in the case of a pneumatic controller, current or voltage for an elec-
tronic controller) that is proportional to the error E. This action may be expressed
a s

P  =  Kc6  + ps (10.1)

where p = output signal from controller, psig or ma
K, = gain, or sensitivity

E = error = set point - measured variable
ps = a constant

The error E, which is the difference between the set point and the signal
from the measuring element, may be in any suitable units. However, the units of
set point and measured variable must be the same, since the error is the difference
between these quantities.

In a controller having adjustable gain, the value of the gain K, can be varied
by moving a knob in the controller. The value of ps is the value of the output
signal when E is zero, and in most controllers ps can be adjusted to obtain the
required output signal when the control system is at steady state and E = 0.
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To obtain the transfer function of Eq. (10. l), we first introduce the deviation
variable

p =p-Ps

into Eq. (10.1). At time t = 0, we assume the error E, to be zero. Then E is
already a deviation variable. Equation (10.1) Becomes

P(t)  = K&(t) (10.2)

Taking the transform of Eq. (10.2) gives the transfer function of an ideal
proportional controller

P(s)  -K

4s)
c (10.3)

The term proportional band is commonly used among process control en-
gineers in place of the term gain. Proportional band (pb) is defined as the error
(expressed as a percentage of the range of measured variable) required to move
the valve from fully closed to fully open. A frequently used synonym is bund-
width. These terms will be most easily understood by considering the following
example.

Example 10.1. A pneumatic proportional controller is used to control temperature
within the range of 60 to 1OO”E  The controller is adjusted so that the output pres-
sure goes from 3 psi (valve fully open) to 15 psi (valve fully closed) as the measured
temperature goes for 71 to 75’ F with the set point held constant. Find the gain and
the proportional band.

(75’F  - 71’F)
Proportional band = (lOOOF  _ 600F)  X 100

= 10%

Gain - Ap  _ cl5 Psi  - 3  psi) = 3 psi/~F
de (7S’F - 71°F)

Now assume that the proportional band of the controller is changed to 75
percent. Find the gain and the temperature change necessary to cause a valve to go
from fully open to fully closed.

AT = (proportional band) (range)

= 0.75(40°F)

= 30°F

12 psi
Gain = -

30°F
= 0.4 p&F

From this example, we see that proportional gain corresponds inversely with
proportional band; thus

Proportional gain a l/proportional band

The  gain K, has the units of psi/unit of measured variable (e.g. psi/OF in Example
10. I).  If the actual controller of Fig. 10.3~ is considered, both the input and the
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output units are in milliamperes. In this case the gain will be dimensionless (i.e.,
ma/ma). Furthermore, the relation between proportional band (pb) in percentage
and K, will be

K, = lOO/[pb(%)]

ON-OFF CONTROL. A special case of proportional control is on-off control. If
the gain K,  is made very high, the valve will move from one extreme position to
the other if the pen deviates only slightly from the set point. This very sensitive
action is called on-off action because the valve is either fully open (on) or fully
closed (off); i.e., the valve acts like a switch. This is a very simple controller and
is exemplified by the thermostat used in a home-heating system. The bandwidth
of an on-off controller is approximately zero.

For various reasons, one of which was suggested in Chap. 1, it is often
desirable to add other modes of control to the basic proportional action. These
modes, integral and derivative action, are discussed below with the objective of
obtaining the ideal transfer functions of the expanded controllers. The reasons for
introducing these modes will be discussed briefly at the end of this chapter and
in more detail in later chapters.

PROPORTIONAL-INTEGRAL (PI) CONTROL. This mode of control is described
by the relationship

p = K,E+~
I

‘~dt+p s
71  0

where K,  = gain
r1 = integral time, min

ps = constant

In this case, we have added to the proportional action term, K&,  another term
that is proportional to the integral of the error. ,The values of K, and q may be
varied by two knobs in the controller.

To visualize the response of this controller, consider the response to a unit-
step change in error, as shown in Fig. 10.5. This unit-step response is most directly
obtained by inserting E = 1 into IQ. (10.4),  which yields

FIGURE 10-5
Response of a PI controller to a unit-step change in
error.
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(10.5)

Notice that p changes suddenly by an amount K,,  and then changes linearly with
time at a rate Kc/q.

To obtain the transfer function of Eq.  (10.4),  we again introduce the devia-
tion variable P = p - ps into Eq.  (10.4) and then take the transform to obtain

(10.6)

Some manufacturers prefer to use the term reset rate, which is defined as
the reciprocal of 71.  The integral adjustment knob on a controller may be marked
in terms of integral time or reset rate. The calibration of the proportional and
integral knobs is often checked by observing the jump and slope of the step
response shown in Fig. 10.5.

PROPORTIONAL-DERIVATIVE (PD) CONTROL. This mode of control may be
represented by

p = Kc~+Kc&$+ps

where K, = gain
70  = derivative time, min
ps = constant

In this case, we have added to the proportional term another term,
&Q  d cldt  , which is proportional to the derivative of the error. The values of K,
and 70  may be varied separately by knobs on the controller. Other terms that are
used to describe the derivative action are rate  control and anticipatory control.

The action of this controller can be visualized by considering the response
to a linear change in error as shown in Fig. 10.6. This response is obtained by
introducing the linear function e(t) = At into Eq.  (10.7) to obtain

p(t) = AK,t  + AKgD  + ps

FIGURE 10-6
Response of a PD controller to a linear input in error.
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Notice that p changes suddenly by an amount AK,TD  as a result of the derivative
action and then changes linearly at a rate AK,. The effect of derivative action in
this case is to anticipate the linear change in error by adding additional output
Mc’r’D to the propohond  action.

To obtain the transfer function from Eq. (10.7)) we introduce the deviation
variable P = p - ps and then take the transform to obtain

- = K,(l + QS)
4s)

(10.8)

PROPORTIONAL-INTEGRAL-DERIVATIVE (PID)  CONTROL. This mode of
control is combination of the previous modes and is given by the expression

p = K,e+KcrDdt+- l dt +ps

In this case, the controller contains three knobs for adjusting K,, Q, and 71.  The
transfer function for this controller can be obtained from the Laplace  transform of
Eq. (10.9); thus

P(s)- = K,
E(S)

l+q,.s+~
71s

(10.10)

Motivation for Addition of Integral
and Derivative Control Modes

Having introduced ideal transfer functions for integral and derivative modes of
control, we now wish to indicate the practical motivation for use of these modes.
The curves of Fig. 10.7 show the behavior of a typical, feedback control system
using different kinds of control when it is subjected to a permanent disturbance.
This may be visualized in terms of the tank-temperature control system of Chap.
1 after a step change in Ti.  The value of the controlled variable is seen to rise

C o n t r o l  a c t i o n
1 None
2 Proportional
3 Proportional-integral
4 Proportional-integral-derivative

Response of a typical control

T i m e , m in  __t
system showing the effects  of
various modes of control.
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at time zero owing to the disturbance. With no control, this variable continues to
rise to a new steady-state value. With control, after some time the control system
begins to take action to try to maintain the controlled variable close to the value
that existed before the disturbance occurred.

With proportional action only, the control system is able to arrest the rise of
the controlled variable and ultimately bring it to rest at a new steady-state value.
The difference between this new steady-state value and the original value is called
o&?.  For the particular system shown, the offset is seen to be only 22 percent
of the ultimate change that would have been realized for this disturbance in the
absence of control.

As shown by the PI curve, the addition of integral action eliminates the off-
set; the controlled variable ultimately returns to the original value. This advantage
of integral action is balanced by the disadvantage of a more oscillatory behavior.

The addition of derivative action to the PI action gives a definite improve-
ment in the response. The rise of the controlled variable is arrested more quickly,
and it is returned rapidly to the original value with little- or no oscillation. Dis-
cussion of the PD mode is deferred to a later chapter.

The selection among the control systems whose responses are shown in Fig.
10.7 depends on the particular application. If an offset of 22 percent is tolerable,
proportional action would likely be selected. If no offset were tolerable, integral
action would be added. If excessive oscillations had to be eliminated, derivative
action might be added. The addition of each mode means, as we shall see in later
chapters, more difficult controller adjustment. Our goal in forthcoming chapters
will be to present the material that will enable the reader to develop curves such
as those of Fig. 10.7 and thereby to design efficient, economic control systems.

SUMMARY
In this chapter we have presented a brief discussion of control valves and con-
trollers. In addition, we have presented ideal transfer functions to represent their
dynamic behavior and some typical results of using these controllers.

The ideal transfer functions actually describe the action of many types of
controllers, including pneumatic, electronic, computer-based, hydraulic, mechan-
ical, and electrical systems. Hence, the mathematical analyses of control systems
to be presented in later chapters, which are based upon first- and second-order
systems, transportation lags, and ideal controllers, generalize to many branches
of the control field. After studying this text on process control, the reader should
he able to apply the knowledge to, for example, problems in mechanical control
systems. All that is required is a preliminary study of the physical nature of the
systems involved.

PROBLEMS
10.1. A pneumatic PI controller has an output pressure of 10 psi when the set point and

pen point are together. The set point and pen point are suddenly displaced by 0.5
in. (i.e., a step change in error is introduced) and the following data are obtained:
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Time,  set Psk

O- 1 0
o + 8
2 0 7
6 0 5
9 0 3.5

Determine the actual gain (psig per inch displacement) and the integral time.
10.2. A unit-step change in error is introduced into a PID controller. If K,  = 10, q = 1,

and ~0 = 0.5, plot the response of the controller, P(t).
10.3. An ideal PD controller had the transfer function

P
- = KJq,s  + 1)
E

An actual PD controller had the transfer function

P
KC

TDS  + 1-=
E (TdP)S  + 1

where /3 is a large constant in an industrial controller.
If a unit-step change in error is introduced into a controller having the second

transfer function, show that

P(t) = K,(l +Ae-@“D)

where A is a function of p which you are to determine. For p = 5 and K,  = 0.5,
plot P(t) versus t/~.  As p + m, show that the unit-step response approaches that
for the ideal controller.

10.4. A PID controller is at steady state with an output pressure of 9 psig. The set point
and pen point are .initially  together. At time t = 0, the set point is moved away
from the pen point at a rate of 0.5 in./min.  The motion of the set point is in the
direction of lower readings. If the knob settings are

K, = 2 psiglin.  of pen travel
7i  = 1.25min

TD = 0.4min

plot the output pressure versus time.
10.5. The input (e)  to a PI controller is shown in Fig. P10.5. Plot the output of the

controller if K, = 2 and ~1 = 0.50 min.

FIGURE PlO-5
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11
BLOCK

DIAGRAM
OF A

CHEMICAL-REACTOR
CONTROL

SYSTEM

To tie together the principles developed thus far and to illustrate further the pro-
cedure for reduction of a physical control system to a block diagram, we consider
in this chapter the two-tank chemical-reactor control system of Fig. 11.1. This
entire chapter serves as an example and may be omitted by the reader with no
loss in continuity.

Description of System

A liquid stream enters tank 1 at a volumetric flow rate F cfm and contains reactant
A at a concentration of CO moles Alft3. Reactant A decomposes in the tanks
according to the irreversible chemical reaction

A-B

The reaction is first-order and proceeds at a rate

r = kc

where r = moles A decomposing/(ft3)(time)
c = concentration of A, moles Alft3
k = velocity constant, a function of temperature

135
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Controller

FIGURE 11-1
Control of a stirred-tank chemical nxctor.

The reaction is to be carried out in a series of two stirred tanks. The tanks
are maintained at different temperatures. The temperature in tank 2 is to be greater
than the temperature in tank 1, with the result that kz, the velocity constant in
tank 2, is greater than that in tank 1, kl. We shall neglect any changes in physical
properties due to chemical reaction.

The purpose of the control system is to maintain ~2,  the concentration of A
leaving tank 2, at some desired value in spite of variation in inlet concentration
CO. This will be accomplished by adding a stream of pure A to tank 1 through a
control valve.

Reactor ‘Ikansfer  Functions
We begin the analysis by making a material balance on A around tank 1; thus

V%  = Fco - F + ; cl - klVcl  + m
( i

(11.1)

where m = molar flow rate of pure A through the valve, lb moles/mm
PA = density of pure A, lb moles/ft3
V = holdup volume of tank, a constant, ft3

It is assumed that the volumetric flow of A through the valve m/PA is much less
than the inlet flow rate F with the result that E!q.  (11.1) can be written

V%  + (F + klV)cl  = Fco + m (11.2)

This last equation may be written in the form

do 1 1
T1dl+C1  = 1 + klVIF Co + F(l + klV/F)m

(11.3)

where
V

” = F+k,V
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At steady state, dclldt  = 0, and Eq. (11.3) becomes

1 1
Cls =

I + klVIF
cos  + F(l + k,V/F)mS

where s refers to steady state.
Subtracting Eq. (11.4) from (11.3) and introducing the deviation variables

Cl = Cl - Cl$

co  = co  - cos
M=m-m,

give

dC1
‘* d t

-++1=
1 + ;J,F Co  + F(l + :,VIF)M

Taking the transform of Eq. (11.5) yields the transfer function of the first reactor:

Cl(S)  =
l/(l  + klV/F) c

71s + 1 0
(s)  + W’U + W’WIMM(sj

71s + 1
(11.6)

A material balance on A around tank 2 gives

V%  = F(cl  - c2)  - k2Vc2

As with tank 1, this last equation can be written in terms of deviation variables
and arranged to give

dC2 1
r2 d t
-+c2=

1 + k2VIF Cl

where
V

*2 = F+k2V

c2  = c:!  - C&

Taking the transform of Eq. (11.8) gives the transfer function for the second
reactor:

C2(s)  =
l/(l  + k2V/F)

72.7  + 1 Cl(S) (11.9)

To obtain some numerical results, we shall assume the following data to
apply to the system:

Molecular weight of A = 100 lb/lb mole
PA = 0.8 lb mole/ft3

QS = 0.1 lb mole A/ft3
F = 100 cfm

ms = 1.0 lb mole/min
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k2 = 3 min-’

v = 300 ft3

Substituting these constants into the parameters of the problem yields the following
values:

71 = 2 min
72  = 1 min

CL = 0.0733 lb mole Alft3

c2s = 0.0244 lb mole Alft3
m,/pA  = 1.25 cfm

Control Valve

Assume that the control valve selected for the process has the following charac-
teristics: The flow of A through the valve varies linearly from zero to 2 cfm as the
valve-top pressure varies from 3 to 15 psig. The time constant 7,  of the valve is
so small compared with the other time constants in the system that its dynamics
can be neglected.

From the data given, the valve sensitivity is computed as

2 - 0
K, zz -  =

15 - 3
i cfmpsi

Since m,/pA  = 1.25 cfm, the normal operating pressure on the valve is

ps=3+
1.25
,(15  - 3) = 10.5 psi

The equation for the valve is therefore

m = [1.25  + K,(p - 10.5)]p.4

In terms of deviation variables, this can be written

M = K,pAP

where

A4 = m - 1.25~~
P = p - 10.5

Taking the transform of Eq. (11.12) gives

(11.10)

(11.11)

(11.12)

M(s)
- = K,,~A
P(s)

as the valve transfer function.

(11.13)
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Measuring Element
For illustration, assume that the measuring element converts concentration of A to
a pneumatic signal. Specifically, the output of the measuring element varies from
3 to 15 psig as the concentration of A varies from 0.01 to 0.05 lb mole A/ft3.  We
shall assume that the concentration measuring device is linear and has negligible
lag. The sensitivity (or gain) of the measuring device is therefore

K,
15 - 3

0.05 - 0.01
= 300 psi/(lb mole/ft3)

Since czS  is 0.0244 lb mole/ft3,  the normal signal from the measuring device is

0.0244 - 0.01
(15 - 3 ) + 3.0 = 4.32 + 3.0 = 7.320.05 - 0.01 psig

The equation for the measuring device is therefore

b = 7.32 + Km(c2  - 0.0244) (11.14)

where b is the output pressure (psig) from the measuring device. In terms of
deviation variables, Eq. (11.14) becomes

B  =  K,C2 (11.15)

whereB =  b-7.32andC2  =  c2-Q.
The transfer function for the measuring device is therefore

(11.16)

A measuring device that changes the units between input and output signals
is called a transducer; in the present case, the concentration signal is transduced
to a pneumatic signal.

Controller
For convenience, we shall assume the controller to have proportional action, in
which case the relation between controller output pressure and error is

p = ps + Kc(c~ - b) = ps + K,E (11.17)

where CR = desired pneumatic signal (or set point), psig
K, = controller sensitivity, psig/psig

E =error  = CR-b,PSifJ
In terms of deviation variables, Eq. (11.17) becomes

P  =  K,E (11.18)

The transform of this equation gives the transfer function of the controller

(11.19)
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Assuming the set point and the signal from the measuring device to be the same
when the system is at ,steady  state under normal conditions, we have for the
reference value of the set point

CRS = b = 7.32 psig

The corresponding deviation variable for the set point is

CR = CR - cRs

Tb-ansportation  Lag

A portion of the liquid leaving tank 2 is continuously withdrawn through a sample
line, containing a concentration-measuring element, at a rate of 0.1 cfm. The
measuring element must be remotely located from the process, because rigid
ambient conditions must be maintained for accurate concentration measurements.
The sample line has a length of 50 ft, and the cross-sectional area of the line is
0.001 ft2.

The sample line can be represented by a transportation lag with parameter

volume (m0.001)  z o 5 min
rd=flowrate=  0.1 *

The transfer function for the sample line is, therefore,
e-Tds  = e-o.5s

Block Diagram

We have now completed the analysis of each component of the control system
and have obtained a transfer function for each. These transfer functions can now
be combined so that the overall system is represented by the block diagram in
Fig. 11.2.

In Fig. 11.2, a block containing the transfer function K, is placed at the
positive inlet of the comparator in order to relate the set point in concentration
units to a pneumatic signal, which matches the units of the feedback signal B. If
the pneumatic controller in Fig. 11.2 were replaced by an electronic or computer-

cR

1 Cl 1
l+klVIF  -  l+k,VlF

F
qs+l zp+l  1

FIGURE 11-2
Block diagram for a chemical-reactor control system.
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ri= 2, r,= 1, rd= 0.5 K,= &

FIGURE 11-3
Equivalent block diagram for a chemical-reactor control system (CR is now in concentration units).

based controller, the block for the controller in Fig. 11.2 would be replaced by
two blocks; one for the electronic controller and one for the converter, which
converts the controller output (ma) to the pneumatic signal (psig). An equivalent
diagram is shown in Fig. 11.3 in which some of the blocks have been combined.

Numerical quantities for the parameters in the transfer functions are given in
Fig. 11.3. It should be emphasized that the block diagram is written for deviation
variables. The true steady-state values, which are not given by the diagram, must
be obtained from the analysis of the problem.

The example analyzed in this chapter will be used later in discussion of
control system design. The design problem will be to select a value of Kc that gives
satisfactory control of the composition C2 despite the rather long transportation
lag involved in getting information to the controller. In addition, we shall want
to consider possible use of other modes of control for the system.

3 PROBLEMS

11.1. In the process shown in Fig. Pll.  1, the concentration of salt leaving the second
tank is controlled using a proportional controller by adding concentrated solution
through a control valve. The following data apply:

1. The controlled concentration is to be 0.1 lb salt/ft3  solution. The inlet concen-
tration ci  is always less than 0.1 lb/ft3.

2. The concentration of concentrated salt solution is 30 lb salt/ft3  solution.
3. Transducer: the output of the transducer varies linearly from 3 to 15 psig as the

concentration varies from 0.05 to 0.15 lb/ft3.
4. Controller: the controller is a pneumatic, direct-acting, proportional controller.
5. Control valve: as valve-top pressure varies from 3 to 15 psig;  the flow through

the control valve varies linearly from 0 to 0.005 cfm.
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Concent ra ted  so lu t ion

J
_ -z
~-
--=
--
--

- L.
Contro l le r

+ Set point

Sa l t  so lu t i on
1 ft3/mi n

ci

FIGURE Pll-1

6. It takes 30 set  for the solution leaving the second tank to reach the transducer
at the end of the pipe.

Draw a block diagram of the control system. Place in each block the appropriate
transfer function. Calculate all the constants and give the units.



CHAPTER

12
CLOSED-LOOP

TRANSFER
FUNCTIONS

Standard Block-Diagram Symbols
In Chap. 9, a block diagram was developed for the control of a stirred-tank heater
(Fig. 9.2). In Fig. 12.1, the block diagram has been redrawn and incorporates
some standard symbols for the variables and transfer functions, which are widely
used in the control literature. These symbols are defined as follows:

R = set point or desired value
C = controlled variable

E = error
B = variable produced by measuring element

M = manipulated variable
U = load variable or disturbance

G,  = transfer function of controller
Gt  = transfer function of final control element
G2  = transfer function of process
H = transfer function of measuring element

In some cases, the blocks labeled G,  and G t will be lumped together into a sin-
gle block as was done in Chap. 9. The series of blocks between the comparator and

1 4 3
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FIGURE 12-1
Standard control system nomenclature.

the controlled variable, which consist of G,, Gi, and G2,  is referred to as the
forwurd path. The block H between the controlled variable and the comparator is
called the feedback path. The use of G for a transfer function in the forward path
and H for one in the feedback path is a common convention.

The product GH, which is the product of all transfer functions (G,GlGzH)
in the loop, is called the open-loop transfer function. We call GH the open-loop
transfer function because it relates the measured variable B to the set point R if the
feedback loop (of Fig. 12.1) is disconnected (i.e., opened) from the comparator.
The subject of this chapter is the closed-loop transfer function, which relates two
variables when the loop of Fig. 12.1 is closed.

In more complex systems, the block diagram may contain several feedback \
paths and several loads. An example of a multiloop system, which is shown in
Fig. 12.2, is cascade control. Several multiloop systems of industrial importance
are presented in Chap. 18.

Overall lhnsfer  hnction
for Single-Loop Systems

Once a control system has been described by a block diagram, such as the one
shown in Fig. 12.1, the next step is to determine the transfer function relating
C to R or C to U. We shall refer to these transfer functions as overall transfer
functions because they apply to the entire  system. These overall transfer functions
are used to obtain considerable information about the control system, as will be
demonstrated in the succeeding chapters. For the present it is sufficient to note
that they are useful in determining the response of C to any change in R and U.

FIGURE 12-2
Block diagram for a multiloop, multiload system.
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(a) (b) (cl

FIGURE  12-3
Block-diagram reduction to obtain overall transfer  function.

The response to a change in set point R, obtained by setting U = 0, represents
the solution to the servo problem. The response to a change in load variable U,
obtained by setting R = 0, is the solution to the regulator problem. A systematic
approach for obtaining the overall transfer function for set-point change and load
change will now be presented.

Overall ‘Ikansfer  Function  for Change
in Set Ebint
For this case, U = 0 and Fig. 12.1 may be simplified or reduced as shown in
Fig. 12.3. In this reduction, we have made use of a simple rule of block-diagram
reduction which states that a block diagram consisting of several transfer functions
in series can be simplified to a single block containing a transfer function that is
the product of the individual transfer functions.

This rule can be proved by considering two noninteracting blocks in series
as shown in Fig. 12.4. This block diagram is equivalent to the equations

Y Z-=
X

GA - = GB
Y

Multiplying these equations gives

YZ- -
XY

= GAGB

which simplifies to

Z
- = GAGB
X

Thus, the intermediate variable Y has been eliminated, and we have shown the
overall transfer function Z/X to be the product of the transfer functions GAGS.
This proof for two blocks can be easily extended to any number of blocks to give
the rule for the general case. This rule was developed in Chap. 7 for the specific
case of several nonintemcting, first-order systems in series.

x-@++z  FIGURE 12-4
ltvo aoaiateractiag blocks ia series.
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With this simplification the following equations can be written directly from
Fig. 12.3b.

C = GE (12.1)
B = HC (12.2)
E=R-B (12.3)

Since there are four variables and three equations, we can solve the equations
simultaneously for C in terms of R as follows:

C = G(R - B)

C = G(R-HC)
C  =  G R - G H C

or finally

C G-=-
R l+GH

(12.4)

This is the overall transfer function relating C to R and may be represented
by an equivalent block diagram as shown in Fig. 12.3~.

Overall Transfer Fbnction  for Change in Load

In this case R = 0, and Fig. 12.1 is drawn as shown in Fig. 12.52.  From the
diagram we can write the following equations:

C = G2(U+M) (12.5)

M = G,Gle (12.6)
B = HC (12.7)
E = -B (12.8)

Again the number of variables (C, U, M,  B, E) exceeds by one the number
of equations, and we can solve for C in terms of U as follows:

C = G2(U  + G,Gle)

C = G2[U  + G,GI(-HC)]

(a) @I
FIGURE  12-5
Block diagram for change in load.
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(12.9)

where G = GcGiG2. Notice that the transfer functions for load change or set-
point change have denominators that are identical, 1 + GH.

The following simple rule serves to generalize these results for the single-
loop feedback system shown in Fig. 12.1: the transfer function relating any pair
of variables X,  Y is obtained by the relationship

Y Tf-=-
X 1 + lr[

negative feedback

where rrf = product of transfer functions in the path between the locations of
the signals X and Y

7~1 = product of all transfer functions in the loop (i.e., in Fig. 12.1,
al = G,G1G2H)

If this rule is applied to finding C/R in Fig. 12.1, we obtain

C GcGG G-=
R .l + G,GIG2H = l+GH

which is the same as before. For positive feedback, the reader should show that
the following result is obtained:

Y “f-=-
X 1 - ‘TT[

positive feedback (12.11)

Example 12.1. Determine the nansfer  functions C/R, C/Ul,  and B/U2  for the sys-
tem show in Fig. 12.6. Also determine an expression for C in terms of R and Ur
for the situation when both set-point change and load change occur simultaneously.

Using the rule given by Eq.  (12.10),  we obtain by inspection the results

(12.12)

(12.13)

(12.14)

Block diagram for Example 12.1.
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where G = G,G 1 G2G3H  1  Hz. The reader should check one or mote  of these results
by the direct method of solution of simultaneous equations.

For separate changes in R and Ut , we may obtain the response C from Eqs.
(12.12) and (12.13); thus

c =
GcGlG2G3  R

l+G
and

(12.15)

If both R and Ut occur simultaneously, the principle of superposition requires that
the overall response be the sum of the individual responses; thus

c = G,GIW%~  + GzG3

l+G -u1l+G
(12.17)

Overall Ihnsfer  Function for Multiloop
Control Systems

To illustrate how one obtains the overall transfer function for a multiloop &em,
consider the next example in which the method used is to reduce the block diagram
to a single-loop diagram by application of the rules summarized by Eqs. (12.10)
and (12.11).

Example 12.2. Determine the transfer function C/R for the system shown in Fig.
12.7. This block diagram represents a cascade control system, which will be dis-
cussed later.

R c

(a)

RR”Rjx/+C

lb) (4
FIGURE 12-7
Block diagram reduction: (a) original diagram, (b) first reduction, (c) final single-block diagram.
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Obtaining the overall transfer function C/R for the system represented by Fig.
12.7~  is straightforward if we first reduce the inner loop (or minor loop) involving
Gcz, G1, and H2 to a single block, as we have just done in the case of Fig. 12.1. For
convenience, we may also combine G3 and G3 into a single block. These reductions
are shown in Fig. 12.7b.  Figure 12.7b is a single-loop block diagram that can be
reduced to one block as shown in Fig. 12.7~.

It should be clear without much detail mat to find any other transfer function
such as C/U1  in Fig. 12.7a, we proceed in the same manner, i.e., first reduce the
inner loop to a single-block equivalent.

SUMMARY
In this chapter, we have illustrated the procedure for reducing the block diagram
of a control system to a single block that relates one input to one output variable.
This procedure consists of writing, directly from the block diagram, a sufficient
number of linear algebraic equations and solving them simultaneously for the
transfer function of the desired pair of variables. For single-loop control systems,
a simple rule was developed for finding the transfer function between any desired
pair of input-output variables. This rule is also useful in reducing a multiloop
system to a single-loop system.

It should be emphasized that regardless of the pair of variables selected,
the denominator of the closed-loop transfer function will always contain the same
term, 1 + G, where G is the open-loop transfer function of the single-loop control
system. In the succeeding chapters, frequent use will be made of the material in
this chapter to determine the overall response of control systems.

PROBLEMS
12.1. Determine the transfer function Y(s)/X(s)  for the block diagrams shown in Fig.

P12.1. Express the results in terms of Ga, Gb,  and G,.

l Y

FIGURE P12-1

(b)
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12.2. Find the transfer function Y(s)/X(s) of the system shown in Fig. P12.2.

FIGURE  P12-2

12.3. For  the control system shown in Fig. P12.3 determine the transfer function
C(s)/R(s).  .

FIGURE P12-3

12.4. Derive the transfer function Y/X for the control system shown in Fig. P12.4.

FIGURE P12-4



CHAPTER

13
TRANSIENT
RESPONSE
OFSIMPLE
CONTROL
SYSTEMS

In this chapter the results of all the previous chapters will be applied to determining
the transient response of a simple control system to changes in set point and load.*
Considerable use will be made of the results of Chaps. 5 through 8 (Part II) because
the overall transfer functions for the examples presented here reduce to first- and
second-order systems.

Consider the control system for the heated, stirred  tank that has been dis-
cussed in Chaps. 1 and 9 and is represented by Fig. 13.1. The reader may want
to refer to Chap. 9 for a description of this control system.

In Fig. 13. la, the sketch of the apparatus is drawn in such a way that
the source of heat (electricity or steam) is not specified. To make this problem
more realistic, we have shown in Fig. 13. lb that the source of heat is steam that is

t discharged directly into the water and in Fig. 13. lc the source of heat is electrical.
In the latter drawing, a device known as a power controller provides electrical
power to a resistance heater proportional to the signal from the controller.

*The reader who is interested in the simulation of control systems by digital computer is advised to
study Chap. 34 at this point.

1 5 1
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FIGURE111
Block diagram of temperature-control system.
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(e)

The block diagram is shown in Fig. 13. Id.  The block representing the pro-
cess is taken directly from Fig. 9.3. To reduce the number of symbols I/WC  has
been replaced by A in Fig. 13.1.~.

Throughout this chapter, we shall assume that the valve does not have any
dynamic lag, for which case the transfer function of the valve (G t in Fig. 13.1)
will be taken as a constant K,.  This assumption was shown to be reasonable in
Chap. 10. To simplify the discussion further, K, has been taken as 1. (If K ,, were
other than 1, we may simply replace G,  by G,K, in the ensuing discussion.)

In the first part of the chapter, we shall also assume that there is no dynamic
lag in the measuring element (rm = 0), so that it may be represented by a transfer
function that is simply the constant 1. A bare thermocouple will have a response
that is so fast that for all practical purposes it can be assumed to follow the slowly
changing bath temperature without lag. When the feedback transfer function is
unity, the system is called a unity-feedback system.

Introducing these assumptions leads to the simplified block diagram of Fig.
13.le,  for which we shall obtain overall transfer functions for changes in set point
and load when proportional and proportional-integral control are  used.

Proportional Control for Set-Point Change
(Servo Problem)
For proportional control, G, = K,. Using the methods developed in the previous
chapter, the overall transfer function in Fig. 13. le is

T’ K,A/(m  + 1) &A-=
1 + K&m  + 1) = rs  + 1 + K,A

(13.1)
G
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This may be rearranged in the form of a first-order lag to give
T’ Al-=
TA 71s + 1

(13.2)

where ~1  =
7

1 + K,A

A1 = &A 1
1 + K,A = 1 + l/K,A

According to this result, the response of the tank temperature to change in
set point is first-order. The time constant for the control system, ~1,  is less than
that of the stirted  tank itself, r. This means that one of the effects of feedback
control is to speed up the response. We may use the results of Chap. 5 to find the
response to a variety of inputs.

The response of the system to a unit-step change in set point Ti is shown in
Fig. 13.2. (We have selected a unit change in set point for convenience; responses
to steps of other magnitudes am  obtained by superposition.) For this case of a
unit-step change in set point, T’ approaches A1  = K&(  1 + K,A),  a fraction
of unity. The desired change is, of course, 1. Thus, the ultimate value of the
temperature T’(a) does not match the desired change. This discrepancy is called
o&t and is defined as

Offset = T;(w) - T’(m)

In terms of the particular control system parameters

(13.3)

Offset = 1 - 1 :t A
1

=
c 1 + K,A

(13.4)

This discrepancy between set point and tank temperature at steady state is charac-
teristic of proportional control. In some cases offset cannot be tolerated. However,
notice from Eq.  (13.4) that the offset decreases as K, increases, and in theory the
offset could be made as small as desired by increasing K, to a sufficiently large
value. To give a full answer to the problem of eliminating offset by high controller
gain requires a discussion of stability and the response of the system when other
lags, which have been neglected, are included in the system. Both these subjects
are to be covered later. For the present we shall simply say that whether or not
proportional control is satisfactory depends on the amount of offset that can be
tolerated, the speed of response of the system, and the amount of gain that can
be provided by the controller without causing the system to go unstable.

0- FIGURE  W-2
0 t Unit-step response for set-point change (P control).
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Proportional Control for Load Change
(Regulator Problem)

The same control system shown in Fig. 13.k  is to be considered. This time the
set point remains fixed; that is, Ti = 0. We am  interested in the response of the
system to a change in the inlet stream temperature, i.e., to a load change.

Using the methods of Chap. 12, the overall transfer function becomes

_ = AA-‘/(TS  + 1)T’ 1

Ti’ 1 + K,A/(m  + 1) = TS  + 1 + KJ
(13.5)

This may be arranged in the form of the first-order lag; thus

T’ A2-=-
Ti’ 71s + 1

where A2 = 1
1 + K,A

(13.6)

‘l = 1 + K,A

As for the case of set-point change, we have an overall response that is first-order.
The overall time constant ri is the same as for set-point changes. The response of
the system to a unit-step change in inlet temperature Ti is shown in Fig. 13.3. It
may be seen that T ’ approaches l/( 1 + K,A). To demonstrate the benefit of control,
we have shown the response of the tank temperature (open-loop response) to a
unit-step change in inlet temperature if no control were  present; that is, K, = 0.
In this case, the major advantage of control is in reduction of offset. From E5q.
(13.3),  the offset becomes

Offset = T;(m)  - T’(m)  = 0 - 1 + ‘K  A
c

1=-
1 + K,A

(13.7)

As for the case of a step change in set point, the offset is reduced as controller
gain K, is increased.

Without controlWithout control

{With  control (K,A=2){With  control (K,A=2)

FIGURE 13-3
Unit-step response for load change (P control).
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Proportional-Integral Control for Load Change
In this case, we replace G,  in Fig. 13.le  by K,(l  + l/rls).  The overall transfer
function for load change is therefore

T’ AK’I(TS  + 1)-=
Ti’ 1 + [K,AI(7s  + l)](l  + l/~~s)

(13.8)

Rearranging this gives

T’ 71  s-=
Ti’ (7s  + l)(r,s)  + K,A(qs  + 1)

or

T’ TI s-=
Ti rrIs2  + (KcAq  + q)s  + K,A

Since the denominator contains a quadratic expression, the transfer function
may be written in the standard form of the transportation lag to give

T’ (~IKA)s-=
Ti (q/KcA)s2  + ~~(1  + l/K,A)s  + 1

or

71where Al=-
Kc.4

T’ AlS-=
Ti’ TfS’  + 2cqs  + 1

(13.9)

For a unit-step change in load, T/ = l/s. Combining this with Eq. (13.9)
gives

T’  = Al
ti TfS2  + 2lqs  + 1

(13.10)

Equation (13.10) shows that the response of the tank temperature is equivalent to
the response of a second-order system to an impulse function of magnitude A 1.

Since we have studied the impulse response of a second-order system in Chap.
8, the solution to the present problem is already known. This justifies in part

uur  previous work on transients. Using Eq. (8.3 l), the impulse response for this
system may be written for 5 < 1 as

T’  = Al e-It”1 sin (13.11)
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FIGURE 13-4
Unit-step response for load change (PI control).

0.2 - r=I

Although the response of the system can be determined from JZq.  (13.11)
or Fig. 8.5, the effect of varying K, and 71  on the system response can beseen
mote clearly by plotting response curves, such as those shown in Fig. 13.4. From
Fig. 13.4a, we see that an increase in K,,  for a fixed value of 71,  improves
the response by decreasing the maximum deviation and by making the response
less oscillatory. The formula for 4’ in E$,  (13.9) shows that 5 increases with K,,
which indicates that the response is less oscillatory. Figure 13.4b  shows that, for a
fixed value of K,, a decrease in r1 decreases the maximum deviation and period.
However, a decrease in ~1  causes the response to become more oscillatory, which
means that 6 decreases. This effect of ~1  on the oscillatory nature of the response
is also given by the formula for 5 in Eq. (13.9).

For this case, the offset as defined by Eq. (13.3) is zero; thus

Offset = T;(m)  - T’(m)
=(-J-o=0

One of the most important advantages of PI control is the elimination of offset.

Proportional-Integral Control for Set-Point
Change
Again, the controller transfer function is K,(l + l/~~s),  and we obtain from Fig.
13. le the transfer function

T ’ K,A(1  + lhIs)~l/(m  + I)]-=
G 1 + K,A( 1 + l/~~s)[l/(~s + l)]

This equation may be reduced to the standard quadratic form to give
T’ qs,+  1-=
Tli T?S”  + 2Jqs  + 1

(13.12)

(13.13)

where ~1 and 4’ are the same functions of the parameters as in Eq. (13.9). Intro-
ducing a unit-step change (Ti = l/s)  into Q. (13.13) gives

T’  = 1 71s + 1
s +2 + 2gqs  + 1

(13.14)
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K,=l
5 =0.2
A=1
7-1

I
6 FIGURE 13-5

t Unit-step response for set point change (PI control).

TO obtain the response of T’ in the time domain, Eq. (13.14) is expanded into
two terms:

T’ = 71 1 1
TfS’ + xqs + 1 + - 2 2STlS +yqs  +  1

(13.15)

The first term on the right is equivalent to the response of a second-order
system to an impulse function of magnitude 71.  The second term is the unit-step
response of a second-order system. It is convenient to use Figs. 8.2 and 8.5 to
obtain the response for Eq. (13.15). For f < 1, an analytic expression for T ’ is

T’ = 71  Jhe-lt”l  sin J1-52:

+ 1 - J&e-i”q  sin J-i  + tan-’
i

47

)

(13.16)
t

The last expression was obtained by combining Eqs. (8.17) and (8.31). A typical
response for T ’ is shown in Fig. 13.5. The offset as defined by Eq. (13.3) is zero;
thus

Offset = T;(m)  - T’(m)
El-l=0

Again notice that the integral action in the controller has eliminated the offset.

Proportional Control of System
with Measurement Lag
In the previous examples the lag in the measuring element was assumed to be
negligible, for which case the feedback transfer function was taken as 1. We now
consider the same control system, the stirred-tank heater of Fig. 13.1, with a first-
order measuring element having a transfer function l/(r,s  + 1). The block diagram
for the modified system is now shown in Fig. 13.6. By the usual procedure, the
transfer function for set-point changes may be written

T’ Al(~ms  + 1)-=
TA r&s2  + 24272s  + 1

(13.17)
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FIGURE  13-6
Control system with measurement lag.

where A, = &A
l+ K,A

J

rrrn
T!= 1 +K,A

7 + Tm
32  = -

1

2JxJGzJ

We shall not obtain an expression for the transient response for this case,
for it will be of the same form as Eq.  (13.16). Adding the first-order measuring
lag to the control system of Fig. 13.1 produces a second-order system even for
proportional control. This means there will be an oscillatory response for an
appropriate choice of the parameters T,  T,,  K,, and A. In order to understand the
effect of gain K, and measuring lag rm  on the behavior of the system, response
curves am  shown in Fig. 13.7 for various combinations of K, and T, for a fixed
value of T = 1. In general, the response becomes mom oscillatory, or less stable,
as K, or r,,,  increases.

0 1 2 3 4  5 t
(a) (b)

(cl
FIGURE 13-7
Effect of controller gain and measuring lag on system response for unit-step change in set point.
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For a fixed value of T,,,  = 1, Fig. 13.7~  shows that the offset is reduced as
K, increases; however, this improvement in steady-state performance is obtained
at the expense of a poorer transient response. As K, increases, the overshoot
becomes excessive and the response becomes more oscillatory. In general, we
shall find that a control system having proportional control will require a value of
K, that is based on a compromise between low offset and satisfactory transient
response.

For a fixed value of controller gain (K, = 8))  Fig. 13.7b  shows that an
increase in measurement lag produces a poorer transient response in that the over-
shoot becomes greater and the response more oscillatory as T,,,  increases. This
behavior illustrates a general rule that the measuring element in a control system
should respond quickly if satisfactory response is to be achieved.

SUMMARY

In this chapter, we have confined our attention to the response of simple control
systems that were either first-order or second-order. This means that the transient
response can be found by referring to Chaps. 5 and 8. However, if integral action
were added to the controller in the system of Fig. 13.6, the overall transfer
function would have a third-order polynomial in the denominator. Inversion would
require factoring a cubic, which is generally a difficult task. Actually, systems with
denominator polynomials of order greater than two are the rule rather than the
exception. Hence, we shall develop in forthcoming chapters convenient techniques
for studying the response of higher-order control systems. These techniques will
he of direct use in control system design.

In Chap. 1, PI control of a heated, stirred tank with measurement lag was
discussed. It was indicated that incorrect selection of controller parameters could
lead to a response with increasing amplitude. These unstable responses can occur
in all systems with third- or higher-order polynomials in the denominator of the
overall transfer function. In the next chapter, we shall present a concrete definition
of stability and begin the development of methods for determining stability in
control systems.

PROBLEMS

13.1. The set point of the control system shown in Fig. P13.1 is given a step change of
0.1 unit. Determine:
(a) The maximum value of C and the time at which it occurs.
(b)  The offset.
(c) The period of oscillation.
Draw a sketch of C(t) as a function of time.

,C

FIGURE P13-1
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FIGURE P13-2

13.2. The control system shown in Fig. P13.2 contains a three-mode controller.
(a)  For the closed loop, develop formulas for the natural period of oscillation r

and the damping factor 5  in terms .of the parameters K,  70.  q , and 71.
For the following parts, TD  = 71 = 1 and rt = 2,
(b) Calculate l when K is 0.5 and when K is 2.
(c) Do 6 and r approach limiting values as K increases, and if so, what am these

values?
(6)  Determine the offset for a unit-step change in load if K is 2.
(e)  Sketch the response curve (C versus r)  for a unit-step change in load when K

is 0.5 and when K is 2.
v) In both cases of part (e) determine the maximum value of C and the time at

which it occurs.
13.3. The location of a load change in a control loop may affect the system response. In

the block diagram shown in Fig. P13.3, a unit-step change in load enters at either
location 1 or location 2.
(a) What is the frequency of the transient response when the load enters at location

1 and when the load enters at location 2?
(b) What is the offset when the load enters at location 1 and when it enters at

location 2?
(c)  Sketch the transient response to a step change in Ut and to a step change in

u2.

FIGURE P13-3

13.4. Consider the liquid-level control system shown in Fig. P13.4. The tanks are non-
interacting. The following information is known:

1. The resistances on the tanks are linear. These resistances were tested separately,
and it was found that, if the steady-state flow rate q cfm is plotted against
steady-state tank level h ft, the slope of the line dqldh  is 2 ft*/min.

2. The cross-sectional area of each tank is 2 ft2.
3. The control valve was tested separately, and it was found that a change of 1

psi in pressure to the valve produced a change in flow of 0.1 cfm.
4. There is no dynamic lag in the valve or the measuring element.
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FIGURE P13-4

(a) Draw a block diagram of this control system, and in each block give the transfer
function, with numerical values of the parameters.

(b) Determine the controller gain K,  for a critically damped response.
(c) If the tanks were connected so that  they were interacting, what is the value of

K,  needed for critical damping?
(6)  Using 1.5 times the value of Kc  determined in part (c), determine the response

of the level in tank 2 to a step change in set point of 1 in. of level.
13.5. A PD controller is used in a control system having a first-order process and a

measurement lag as shown in Fig. P13.5.
(4
(b)

(4

Find expmzons  for 6  and T for the closed-loop response.
If 71 = 1 min, TV = 10 set,  find K,  so that  l = 0.7 for the two cases:
(1) 7-0  = 0, (2) 70 = 3 sec.
Compare the offset and period realized for both  cases, and comment on the
advantage of adding the derivative mode.

FIGURE P13-5

13.6. The thermal system shown in Fig. P13.6 is controlled by a PD controller.

Data: w = 250 lb/min
p = 62.5 lb/ft3

&=4ft3

v2  = 5 ft3
V3 = 6 ft3

C = 1 Btu/(lb)(“F)
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A change of 1 psi from the controller changes the flow rate of heat q by 500
Btuhnin.  The temperature  of the inlet stream may vary. The= is no lag in the
measuring element.
(a) Draw a block diagram of the control system with the appropriate transfer

function in each block. Each  transfer function should contain numerical values
of the parameters.

(b)  From the block diagram, determine the overall transfer function relating the
temperature in tank 3 to a change in set point.

(c) Find the offset for a unit-step change in inlet temperature if the controller gain
K, is 3 psi per OF  of tempera-  error and the derivative time is 0.5 min.

13.7. (a) For the control system shown in Fig. P13.7, obtain the closed-loop transfer
function C/U.

(b) Find the value of K, for which the closed-loop response has a f‘  of 2.3.
(c)  Find the offset for a unit-step change in U if Kc = 4.

FIGURE P13-7

s+l +
10.25s + 1 1 *c

13.8. For the control system shown in Fig. P13.8, determine:
(4 C(sYNs)
(b)  C(w)
(c)  offset
(4 W.5)
(e)  whether the closed-loop response is oscillatory

I 2 1
s(s+l)

NC

FIGURE Pl3-8
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FIGURE P13-9

13.9. For the control system shown in Fig. P13.9, determine an expression for C(t) if
a unit-step change occurs in R. Sketch the response C(f) and compute C(2).

13.10. Compare the responses to a unit-step change in set point for the system shown in
Fig. P13.10 for both negative feedback and positive feedback. Do this for K,  of
0.5 and 1.0. Compare these responses by sketching C(r).

FIGURE P13-10



CHAPTER

14
STABILITY

CONCEPT OF STABILITY
In the previous chapter, the overall response of the control system was no higher
than second-order. For these systems, the step response must resemble those of
Fig. 5.6 or of Fig. 8.2. Hence, the system is inherently stable. In this chapter
we shall consider the problem of stability in a control system (Fig. 14.1) only
slightly more complicated than any studied previously. This system might repre-
sent proportional control of two stirred-tank heaters with measuring lag. In this
discussion, only set-point changes are to be considered. From the methods de-
veloped in Chap. 12 for determining the overall transfer function, we have from
Fig. 14.1.

C‘ KcG-=
R 1 + K,GH

(14.1)

In terms of the particular transfer functions shown in Fig. 14.1, C/R be-
comes, after some rearrangement,

c Kc(73S  + 1)-=
R (7,s  + l)(~~s  + l)(~~s  + 1) + K,

(14.2)

The denominator of Eq. (14.2) is third-order. For a unit-step change in R,
the transform of the response is

CL Kc(73~  + 1)
s (?-IS  + 1)(7-2s  + 1)(73s + I) + K, (14.3)

164
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1N--T,S+l FIGURJZ14-1
Third-order control system.

To obtain the transient response C(t),  it is necessary to find the inverse of Eq.
(14.3). This requires obtaining the roots of the denominator of Eq.  (14.2),  which
is third-order. We can no longer find these roots as easily as we did for the second-
order systems by use of the quadratic formula. However, in principle they can
always be obtained by algebraic methods.

It is appmnt  that the roots of the denominator depend on the particular
values of the time constants and K,.  These roots determine the nature of the
transient response, according to the rules presented in Fig. 3.1 and Table 3.1. It
is of interest to examine the nature  of the response for the control system of Fig.
14.1 as K, is varied, assuming the time constants ~1~72,  and 73 to be fixed. To be
specific, consider the step response for ~1  = 1,~  = 1,  and 73 = 5 for several
values of K, . without going into the detailed calculations at this time, the results
of inversion of Eq.  (14.3) are shown as response curves in Fig. 14.2. From these
response curves, it is seen that, as K, increases, the system response becomes
more oscillatory. In fact, beyond a certain value of K,,  the successive amplitudes
of the response grow rather than decay; this type of response is called unstable.
Evidently, for some values of K,, there is a pair of roots corresponding to s4  and
s;  of Fig. 3.1. As control system designers, we are  clearly interested in being
able to determine quickly the values of K, that give unstable responses, such as
that corresponding to K, = 12 in Fig. 14.2.

FIGURE 14-2
Response of control system of
Fig. 14-1 for a unit-step change
in set point.
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If the order of Eq. (14.2) had been higher than three, the calculations neces-
sary to obtain Fig. 14.2 would have been even more difficult. In the next chapter,
on root-locus methods, a powerful graphical tool for finding the necessary roots
will be developed. In this chapter, the focus is on developing a clearer under-
standing of the concept of stability. In addition, we shall develop a quick test for
detecting roots having positive real parts, such as ~4 and sq* in Fig. 3.1.

Definition of Stability (Linear Systems)
For our purposes, a stable system will be defined as one for which the output
response is bounded for all bounded inputs. A system exhibiting an unbounded
response to a bounded input is unstable. This definition, although somewhat loose,
is adequate for most of the linear systems and simple inputs that we shall study.

A bounded input function is a function of time that always falls within certain
bounds during the course of time. For example, the step function and sinusoidal
function are bounded inputs. The function f(t) = t is obviously unbounded.

Although the definition of an unstable system states that the output becomes
unbounded, this is true only in the mathematical sense. An actual physical system
always exhibits bounds or restraints. A linear mathematical model (set of linear
differential equations describing the system) from which stability information is
obtained is meaningful only over a certain range of variables. For example, a linear
control valve gives a linear relation between flow and valve-top pressure only over
the range of pressure (or flow) corresponding to values between which the valve
is shut tight or wide open. When the valve is wide open, for example, further
change in pressure to the diaphragm will not increase the flow. We often describe
such a limitation by the term saturation. A physical system, when unstable, may
not follow the response of its linear mathematical model beyond certain physical
bounds but rather may saturate. However, the prediction of stability by the linear
model is of utmost importance in a real control system since operation with the
valve shut tight or wide open is clearly unsatisfactory control.

STABILITY CRITERION
The purpose of this section is to translate the stability definition into a more simple
criterion, one that can be used to ascertain the stability of control systems of the
form shown in Fig. 14.3.

FIGURE 14-3
Basic single-loop control system.
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CHARACTERISTIC EQUATION. From the block diagram of the control system
(Fig. 14.3),  we obtain by the methods of Chap. 12

C = GG R + G2
u

1 + G1G2H 1 + GlG2H
(14.4)

In order to simplify the nomenclature, let G = GiG2H.  We call G the open-loop
transferfunction  because it relates the measured variable B to the set point R if the
feedback loop of Fig. 14.3 is disconnected from the comparator (i.e., if the loop
is opened). In terms of the open-loop transfer function G, Eq. (14.4) becomes

c= SR+-$J (14.5)

In principle, for given forcing functions R(s) and U(S), Eq. (14.5) may be inverted
to give the control system response.

To determine under what conditions the system represented by Eq. (14.5) is
stable, it is necessary to test the response to a bounded input. Suppose a unit-step
change in set point is applied. Then

GIG:!  1C(s)  = --  = GW’(s)
l+Gs s(s - rl)(s - 12)  . . . (s - r,)

(14.6)

where rl,r2, . . . . rn are the n roots of the equation

1 + G(s) = 0 (14.7)

and F(s) is a function that arises in the rearrangement to the right-hand form of
Eq. (14.6). Equation (14.7) is called the characteristic equation for the control
system of Fig. 14.3. For example, for the control system of Fig. 14.1 the step
response is

C(s)  = GG2
s(1  + G)

KC
/I

KC
= (71s + l)(QS + 1)

s 1+
(71s + l)(QS + l)(T3S + 1) 1

which may be rearranged to ,

C(s) =
Kc(T3s + 1)

s[T1T273s3  -I-  (7172  + 7173 + ~2~3)s~  -I-  (71 -I-  72 -I-  73)s + (1 -i-  Kc)]

This is equivalent to

C ( s )  =
Kc(73s  + l)/T,T273

4s - rd(s  - r2M - r3)

where r 1,  r2,  and r3 are the roots of the characteristic equation

717273s~  + (7172  + 7173 + T2T3)S2  + (71 + 72 + 73)s + (1 + K,) = 0 (14.8)
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Evidently, for this case the function F(s)  in Eq. (14.6) is

F(s) =
(71s  +  l)(QS  +  1)(73s  +  1)

715-2  73

In Chap. 3, the qualitative nature of the inverse transforms of equations such
as Eq. (14.6) was discussed. It was shown that (see Fig. 3.1 and Table 3.1),  if
there are any of the roots ~-1,  r2, . . . , rn in the right half of the complex plane,
the response C(t) will contain a term that grows exponentially in time and the
system is unstable. If there are one or more roots of the characteristic equation at
the origin, there is an s”’  in the denominator of Eq. (14.6) (where m 2 2) and
the response is again unbounded, growing as a polynomial in time. This condition
specifies m as greater than or equal to 2, not 1, because one of the s terms in the
denominator is accounted for by the fact that the input is a unit-step (l/s) in Eq.
(14.6). If there is a pair of conjugate roots on the imaginary axis, the contribution
to the overall step response is a pure sinusoid, which is bounded. However, if the
bounded input is taken as sin w t, where o is the imaginary part of the conjugate
roots, the contribution to the overall response is a sinusoid with an amplitude that
increases as a polynomial in time.

It is evident from Eq. (14.5) that precisely the same considerations apply
to a change in U. Therefore, the definition of stability for linear systems may
be translated to the following criterion: a linear control system is unstable if any
roots of its characteristic equation are on, or to the right of, the imaginary axis.
Otherwise the system is stable.

It is important to note that the characteristic equation of a control system,
which determines its stability, is the same for set-point or load changes. It depends
only on G(s), the open-loop transfer function. Furthermore, although the rules
derived above were based on a step input, they are applicable to any input. This
is true, first, by the definition of stability and, second, because if there is a root of
the characteristic equation in the right half plane, it contributes an unbounded term
in the response to any input. This follows from Eq. (14.5) after it is rearranged
to the form of Eq. (14.6) for the particular input.

Therefore, the stability of a control system of the type shown in Fig. 14.3
is determined solely by its open-loop transfer function through the roots of the
characteristic equation.

Example 14.1. In terms of Fig. 14.3, a control system has the transfer functions

0.5s + 1
G1 3 lo- (PI controller)

s

G2 = 1
2s + 1

(stirred tank)

H=l (measuring element without lag)

We have suggested a physical system by the components placed in parentheses. Find
the characteristic equation and its roots, and determine whether the system is stable.
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The first step is to write the open-loop transfer function:

G  =  GIG2H =
lO(OSs + 1)

s(2s + 1)

The characteristic equation is therefore

1 +  lW.5s  +  1)  =  o

42s + 1)

which is equivalent to

s2+3s+5=o

Solving by the quadratic formula gives

- 3  JG-36s=-*
2 2

or

fiSl = $+jF

- 3 fis2  =
--j,2

Since the real part of s1  and s2  is negative (+), the system is stable.

ROUTH TEST FOR STABILITY
The Routh test is a purely algebraic method for determining how many roots of the
characteristic equation have positive real parts; from this it can also be determined
whether the system is stable, for if there are no roots with positive real parts, the
system is stable. The test is limited to systems that have polynomial characteristic
equations. This means that it cannot be used to test the stability of a control system
containing a transportation lag. The procedure for application of the Routh test is
presented without proof. The proof is available elsewhere (Routh, 1905) and is
mathematically beyond the scope of this text.

The procedure for examining the roots is to write the characteristic equation
in the form

a(# + qsn- + u*r2 + ... + a, = 0 (14.9)

where aa is positive. (If aa is originally negative, both sides are multiplied by
-1.) In this form, it is necessary that all the coefficients

uo, al, a2, . . . , a,-1, a,

he positive if all the roots are to lie in the left half plane. If any coefficient is
negative, the system is definitely unstable, and the Routh test is not needed to
answer the question of stability. (However, in this case, the Routh test will tell
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us the number of roots in the right half plane.) If all the coefficients are positive,
the system may be stable or unstable. It is then necessary to apply the following
procedure to determine stability.

Routh Array

Arrange the coefficients of Eq. (14.9) into the first two rows of the Routh array,
as follows:

Row

1 a0 a2 a 4 a6
2 a1 a3 a5 a7
3 bl h h
4 Cl c2 c3

5 dl dz
6 e1 e2

7 f l
n+l g1

The array has been filled in for n = 7 in order to simplify the discussion. For
any other value of n, the array is prepared in the same manner. In general, there
are (n + 1) rows. For n even, the first row has one more element than the second
r o w .

The elements in the remaining rows are found from the formulas

b1= ala2  - aoas
b2  = ala4  - aoa5 . . .

a1 a1

ha3  - albz
Cl = c2  =

has - albs .  .

bl h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The elements for the other rows are found from formulas that correspond to those
just given. The elements in any row are always derived from the elements of
the two preceding rows. During the computation of the Routh array, any row can
be divided by a positive constant without changing the results of the test. (The
application of this rule often simplifies the arithmetic.)

Having obtained the Routh array, the following theorems are applied to
determine stability.

Theorems of the Routh Test

1. The necessary and sufficient condition for all the roots of the characteristic
equation [Eq. (14.9)]  to have negative real parts (stable system) is that all
elements of the first column of the Routh array (aa, a 1, b 1, c 1, etc.) be positive
and nonzero.
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2. If some of the elements in the first column are negative, the number of roots
with a positive real part (in the right half plane) is equal to the number of sign
changes in the first column.

3. If one pair of roots is on the imaginary axis, equidistant from the origin, and
all other roots are in the left half plane, all the elements of the nth row will
vanish and none of the elements of the preceding row will vanish. The location
of the pair of imaginary roots can be found by solving the equation

cs*+D=o (14.10)

where the coefficients C and D are the elements of the array in the (n - 1)th
row as read from left to right, respectively. We shall find this last rule to be of
value in the root-locus method presented in the next chapter.

The algebraic method for determining stability is limited in its usefulness in
that all we can learn from it is whether a system is stable. It does not give us any
idea of the degree of stability or the roots of the characteristic equation.

Example 14.2. Given the characteristic equation

s4  + 3s2  + 5s2  + 4s + 2 = 0

determine the stability by the Routh criterion.
Since all the coefficients am  positive, the system may be stable. To test this,

form the following Routh array:

ROW

1
2
3
4
5

1 5 2
3 4

1%  %
2% 1 0

2

The elements in the array are found by applying the formulas presented in the rules;
for example, b t , which is the element in the first column, third row, is obtained by

bl  = ala2  - aoa3

a1

or in terms of numerical values,

bl  = (3)(5)  - (1x4)  = 2 _ 4 = y
3 3

Since there is no change in sign in the first column, there are no roots having positive
real parts, and the system is stable.

In the appendix of Chap. 15, a BASIC program for computing the roots of
a polynomial equation is given.

c
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Example 14.3. (a) Using ~1 = 1,~ = i, 73  = f, determine the values of K,  for
which the control system in Fig. 14.1 is stable. (b) For the value of K,  for which
the system is on the threshold of instability, determine the roots of the characteristic
equation with the help of Theorem 3.

Solution. (a) The characteristic equation 1 + G(s) = 0 becomes

KC
l+ (s + l)[(s/2) + l][(s/3)  + l] = O

Rearrangement of this equation for use in the Routh test gives

s3  + 6s2  + 11s  + 6(1 + K,) = 0

The Routb  array is

(14.11)

Row 1

1 1 1 1
2 6 6(1 + Kc)
3 1 0 - K,
4 6(1  + Kc)

Since the proportional sensitivity of the controller (K,) is a positive quantity,
we see that the fourth entry in the first column, 6(1 + K,), is positive. According to
Theorem 1, all the elements of the first column must be positive for stability; hence

10 - K, > 0

Kc -=c  10

It is concluded that the system will be stable only if K,  < 10, which agrees with
Fig. 14.2.

(b) At K,  = 10, the system is on the verge of instability, and the element in
the nth (third) row of the array is zero. According to Theorem 3, the location of the
imaginaryroots  is obtained by solving

Cs2+D  = 0

where C and D are the elements in the (n - 1)th  row. For this problem, with Kc  = 10,
we obtain

6s’  + 66 = 0

s=*jJii

Therefore, two of the roots on the imaginary axisare  located at fi and - fi.
The third root can be found by expressing ELq.  (14.11) in factored form:

(s - Sl)(S  - s2)(s  - $3)  = 0 (14.12)

where ~1. ~2,  and sg  are the roots. Introducing the two imaginary roots (sl  = j fi
and s2  = -j fi)  into Eq. (14.12) and multiplying out the terms give

S3 - s3s2  + 11s  - lls3  = 0 Y
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Comparing this equation with Bq.  (14.11),  we see that ss  = -6. The roots
of the characteristic equation are  therefore s t = j fi, s2  = - j fi, and s3 = -6.

Example 14.4. Determine the stability of the system shown in Fig. 14.1 for which
a PI controller is used. Use 71 = 1,~ = i,n  = f,  K, = 5, and 71 = 0.25.

Solution. The characteristic equation is

1+ VWlv.d(~z~  + 1)
7zs[s  + (1/71)11s  + W2)1[s  + W3)l  =

0

Using the parameters given ahove in this equation leads to

s4 + 6s3 + lls*  + 36s + 120 = 0

Notice that the order of the characteristic equation has increased from three to four
as a result of adding integral action to the controller. The Routh array becomes

Because there are two sign changes in the first column, we know from Theorem 2 of
the Routh test that two roots have positive real parts. From the previous example we
know that for K, = 5 the system is stable with proportional control. With integral
action present, however, the system is unstable for Kc = 5.

SUMMARY AND GUIDE FOR FURTHER
STUDY
A definition of stability for a control system has been presented and discussed.
This  definition was translated into a simple mathematical criterion relating stability
to the location of roots of the characteristic equation. Briefly, it was found that  a
control system is stable if all the roots of its characteristic equation lie in tbe left
half of the complex plane. The  Routh criterion, a simple algebraic test for detecting
roots of a polynomial lying in the right half of the complex plane, was presented
and applied to control system stability analysis. This criterion suffers from two
limitations: (1) It is applicable only to systems with  polynomial characteristic
equations, and (2) it gives no information about the actual location of the roots
and, in particular, their proximity to the imaginary axis.

This latter point is quite important, as can be seen  from Fig. 14.2 and the
results of Example 14.3. The  Routb  criterion tells us only that  for K, < 10
the system is stable. However, from Fig. 14.2 it is clear that the value K, = 9
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produces a response that is undesirable because it has a response time that is too
long. In other words, the controlled variable oscillates too long before returning
to steady state. It will be shown later that this happens because for K, = 9 there
is a pair of roots close to the imaginary axis.

In the next chapter tools will be developed for obtaining more information
about the actual location of the roots of the characteristic equation. This will
enable us to predict the form of the curves of Fig. 14.2 for various values of
K,. The advantage of these tools is that they are graphical and are easy to apply
compared with standard algebraic solution of the characteristic equation.

There are two distinct approaches to this problem: root-locus methods and
frequency-response methods. The former ate discussed in Chap. 15 and the latter
in Chaps. 16 and 17. These groups of chapters am  written in parallel, and the
reader may study one or both groups in either order. As a guide to making this
decision, here am  some general comments concerning the two approaches.

Root-locus methods allow rapid determination of the location of the roots
of the characteristic equation as functions of parameters such as K, of Fig. 14.1.
However, they ate difficult to apply to systems containing transportation lags.
Also, they require a reasonably accurate knowledge of the. theoretical process
transfer function.

Frequency-response methods are an indirect solution to the location of the
roots. They utilize the sinusoidal response of the open-loop transfer function to
determine values of parameters such as K,  that keep these toots a “safe distance”
from the right half plane. The actual transient response for a given value of
K,  can be only crudely approximated. However, frequency-response methods are
easily applied to systems containing transportation lags and may be used with
only experimental knowledge of the unsteady-state process behavior.

A mastery of control theory requires knowledge of both methods because
they ate complementary. However, the reader may choose to study only frequency
response and still be adequately prepared for most of the material in the remainder
of this book. The choice of studying only root locus will be more  restrictive in
terms of preparation for subsequent chapters. In addition, much of the literature
on process dynamics relies heavily on frequency-response methods.

PROBLEMS
14.1. Write the characteristic equation and construct the Routh array for the  control

system shown in Fig. P14.1. Is the system stable for (a) Kc = 9.5, (b) Kc =
11, (c) K, = 12?

I
FIGURE P14-1
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FIGURE Pl4-2

Q4.2 By means of the Routh test, determine the stability of the system shown in Fig.

9

P14.2 when K,  = 2.
4. In the control system of Prob. 13.6, determine the value of gain (psi/’  F) that just

causes the system to be unstable if (a) 70 = 0.25 min, (b) 70 = 0.5 min.
14.4. Prove that, if one or mom of the coefficients (ao,  a 1,  . . . , an)  of the characteristic

equation [Eq.  (14.9)] is negative or zero, then there is necessarily an unstable root.
Hint: First show that allao  is minus the sum of all the rqots,  u2/uo  is plus the
sum of all possible products of two roots, u/uo  is (- 1)’  times the sum of all
possible products of j roots, etc.

14.5. Prove that the converse statement of Prob. 14.4, i.e., that an unstable root implies
that one or mom of the coefficients will be negative or zero, is untrue for all n > 2.
Hint: To prove that a statement is untrue, it is only necessary to demonstrate a
single counterexample.

14.6. Deduce an extension of the Routh criterion that will detect the presence of roots
with real parts greater than --(+  for any specified cr  > 0.

14.7. Show that any complex number s satisfying 1 s 1 < 1 yields a value of

1+s
z==

that satisfies
Re(z) > 0

(Hint: Let s = n + jy; z = u + jv. Rationalize the fraction, and equate real and
imaginary parts of z and the rationalized fraction, Now consider what happens to
the circle x2 + y2  = 1. To show that the inside of the circle goes over to the right
half plane, consider a convenient point inside the circle.)

On the basis of this transformation, deduce an extension of the Routh crite-
rion that will determine whether the system has’roots inside the unit circle. Why
might this information be of interest? How can the transformation be modified to

i--
consider circles of other radii?

I 4.8. Given the control diagram shown in Fig. P14.8, deduce by means of the Routh
criterion those values of rr for which the output C  is__m.se  for all inputs R and U.

FIGURE P14-8
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FIGURE PM-9

14.9. In the control system shown in Fig. P14.9, find the value of K, for which the
system is on the verge of instability. The controller is replaced by a PD controller,
for which the  transfer function is KJTDS + 1). If K, = 10, determine the range
of ?D  for which the system is stable.

14.10. (a) Write the characteristic equation for the control system shown in Fig. P14.10.
(b)  Use the Routh Test to determine if the system is stable for K, = 4.
(c) Determine the ultimate value of Kc, above which the system is unstable.

1
s+?.

FIGURE P14-10

14.11. For the control system in Fig. P14.11,  the characteristic equation is

s4 +4s3 + 6s2 + 4s +(l+K)  = 0

(a) Determine the value of K above which the system is unstable.
(b) Determine the value of K for which two of the roots are on the imaginary

axis, and determine the values of these imaginary roots and the remaining two
roots.

FIGURE P14-11

\



CHAPTER

15
ROOT

LOCUS

\

In the previous chapter on stability, Routh’s criterion was introduced to provide
an algebraic method for determining the stability of a simple feedback control
system (Fig. 14.3) from the characteristic equation of the system [Eq. (14.7)].
This criterion also yields the number of roots of the characteristic equation that
am located in the right half of the complex plane. In this chapter, we shall develop
a graphical method for finding the actual values of the roots of the characteristic
equation, from which we can obtain the transient response of the system to an
arbitrary forcing function.

CONCEPT OF ROOT LOCUS
In the previous chapter, the response of the simple feedback control system, shown
again in Fig. 15.1, was given by the expression

C = GG- R + G2

l+G
-u
l+G

(15.1)

where G = GIG~H.  The factor in the denominator, 1 + G, when set equal to
zero, is called the characteristic equation of the closed-loop system. The roots of
the characteristic equation determine the form (or character) of the response C(t)
to any particular forcing function R(t) or U(t).

The root-locus method is a graphical procedure for finding the roots of
1 + G = 0, as one of the parameters of G varies continuously. In our work,
the parameter that will be varied is the gain (or sensitivity) K,  of the controller.
We can illustrate the concept of a root-locus diagram by considering the example
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FIGURE 15-1
Simple feedback contd system.

presented in Fig. 14.1, which is represented by the block diagram of Fig. 15.1
with

G1 = K,

1
G2  = (71s  + l)(QS  + 1)

1Hz-
Tjs + 1

For this case, the open-loop transfer function is

G = (71s  + l)(QS  + l)(QS  + 1)

which may be written in the alternate form

G(s) =
K

0 - PlNS  - P2NS - p3)
(15.2)

where K = &

p1  = -f p2  = -& p3+

The terms ~1, pz,  and p3 am called the poles of the open-loop transfer function.
A pole of G(s) is any value of s for which G(s) approaches infinity. For example,
it is clear from Eq. (15.2) that, ifs = ~1, the denominator of Eq. (15.2) is zero
and therefore G(s) approaches infinity. Hence p 1 = - l/q is a pole of G(s).

The characteristic equation for the closed-loop system is

1+ K

(3  - PlNS  - P2M - P3) =
0

This expression may be written

@ -P& - P~)(s  - ~3) + K = 0 (15.3)

Using the same numerical values for the poles that were  used at the beginning of
Chap. 14 (-1, -2, -3) gives

~(s + l)(s + 2)(s  + 3) + K = 0 (15.4)
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where

K  =  6K,

Expanding the product of this equation gives

s3  + 6s2  + 11s + (K + 6) = 0 (15.5)

which is third-order. For any particular value of controller gain K,, we can
obtain the roots of the characteristic equation [Eq. (15.5)].  For example, if
K, = 4.41(K  = 26.5),  Eq. (15.5) becomes

s3  + 6s’ + 11s + 32.5 = 0

Solving* this equation for the three roots gives

rl  = -5.10

r* = -0.45 - j2.5

r3 = -0.45’+  j2.5

By selecting other values of K, other sets of roots are obtained as shown in Table
15.1.

For convenience, we may plot the roots r 1, r2,  and r3 on the complex plane
as K changes continuously. Such a plot is called a root-locus diagram and is
shown in Fig. 15.2. Notice that there are three loci or brunches corresponding
to the three roots and that they “emerge” or begin (for K = 0) at the poles of
the open-loop transfer function (-  1, - 2, -3). The direction of increasing K is
indicated on the diagram by an arrow. Also the values of K are marked on each
locus. The root-locus diagram for this system and others to follow is symmetrical
with respect to the real axis, and only the portion of the diagram in the upper half
plane need be drawn. This follows from the fact that the characteristic equation
for a physical system contains coefficients that are real, and therefore complex
roots of such an equation must appear in conjugate pairs.

The root-locus diagram has the distinct advantage of giving at a glance the
character of the response as the gain of the controller is continuously changed.
The diagram of Fig. 15.2 reveals two critical values of K, one is at K2 where two
of the roots become equal, and the other is at K3 where two of the roots are pure
imaginary. It should be clear from the discussion in Chap. 14 that the nature of
the response C(t) will depend only on the roots r 1,  r 2,  r3.  Thus, if the roots are
all real, which occurs for K < K2 in Fig. 15.2, the response will be nonoscillatory.

*The procedure for obtaining the roots of a higher-order equation, such as Eq. (15.5),  is covered in
any text on advanced algebra. In a later section of this chapter, we shall find the roots by a graphical
technique called the root-locus method. There am also numerical methods for finding the roots. In
Appendix 15A of this chapter, a BASIC computer program for computing the roots of a polynomial
equation is given.
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TABLE 15 .1
Roots of the characteristic equation
(s + l)(s + 2)(s  + 3) + K = 0

K = 6K, n n I.3

0 - 3 - 2
0 . 2 3 -3.10 -1.75
0 . 3 9 -3.16 -1.42
1.58 -3.45 - 1.28 - j0.75
6 . 6 -4.11 -0.95 - j 1.5

26.5 -5.10 -0.45 - j2.5
6 0 . 0 -6.00 0.0 - j3.32

100.0 -6.72 0.35 - j4

-1
-1.15
- 1.42

-1.28 + j0.75
-0.95 + jl.5
-0.45 + j2.5

0.0 + j3.32
0.35 + j4

If two of the roots are complex and have negative real parts (K2  < K < Ks), the
response will include damped sinusoidal terms, which will produce an oscillatory
response. If K > K3, two of the roots are complex and have positive real parts, \
and the response is a growing sinusoid. Some of these types of response were
shown in Fig. 14.2.

As another example of a root-locus diagram, let the proportional controller
be replaced with a PI controller, for which case G t in Fig. 15.1 is

G1  = K,(l +
$)

For this case, the open-loop transfer function is

G(s) = Kc(vs  + 1)
qs(71s  + l)(QS + l)(qs  + 1)

KS=60

?a

FIGURE 15-2
Root-locus diagram for
(s  + l)(s  + 2)(s  + 3) + K = 0.
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which may be written in an alternate form

G(s) = K(s - Zl>

es - Plm - P2)O  - P3)
(15.6)

where K = K,
717273 ' z1= -+

p1  = - I ,
71

p2  =  -I
72’

p3  = -1
T3

The term zr is called a zero of the open-loop transfer function. A zero of G(s)
is any value of s for which G(s) approaches zero. By comparing Eq. (15.6) with
Eq.(15.2),  we see that the addition of integral action contributes to the open-loop
transfer function one zero at z1 and one additional pole at the origin.

The characteristic equation corresponding to Eq. (15.6) is

1+ ‘Us  -  zd

es - PlN - P2)(S  - P3)

= o (15.7)

This expression may be written

4s -n>(s --P~)(s  -p3) + K(s - zd = 0 (15.8)

As a specific example of the root-locus diagram corresponding to Eq. (15.8),  let
71 = l,Q  = $,rs  = i, and ~-1  = i. These parameters are the same as those
used in Example 14.4. The root-locus diagram is shown in Fig. 15.3.

Notice that for this case there are four loci corresponding to the four roots
and that they emerge (at K = 0) from the open-loop poles (0, - 1, -2, - 3).
One of the loci moves toward the open-loop zero at -4 as K approaches infinity.
The diagram in Fig. 15.3 should be compared with the one in Fig. 15.2 to see
the effect of adding integral action to the control system. Notice that the value
of K = 3.84, above which the roots move into the right half plane, is lower
than the corresponding value of K = 60 for proportional control. The effect of

FIGURE 15-3
Root-locus diagram for
s(s  + l)(s + 2)(s  + 3)+
K(s  +4) = 0;K = 6K,.
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adding integral action has been to destablize the system in terms of the amount
of proportional action that can be used before instability occurs.

A method for quickly sketching the root-locus diagram was developed by
Evans (1954, 1948) and has been presented in many textbooks on control theory.
In the next section, this method will be presented.

PLOTTING THE ROOT-LOCUS DIAGRAM
Having introduced the concept of root locus by two examples, here are some rules
that were first introduced by Evans (1954, 1948) for plotting root-locus diagrams
of characteristic equations of any order. Without these rules, the time and effort

/ needed to plot root-locus diagrams would be too great to render them useful in
engineering computations.

The first step in applying the root-locus technique to determine the ro t s
%of the characteristic equation of the closed-loop control system is to write t e

open-loop transfer function (G = GiGzH)  in the standard form

G=K;

where K = constant

D = ts - PI)(S  - ~2).  . .(s - PA
The term zi is called a zero of the open-loop transfer function. The term pi is
called a pole of the open-loop transfer function. This term was defined earlier in
this chapter. A zero of G(s) is any value of s for which G(s) equals zero. The
factored terms (S - zi)  and (S -pi) in N/D arise naturally in the open-loop transfer
function. For example, in the control system considered at the beginning of this
chapter, Eq. (15.2) was written in the standard form with

KCK=-
7172 73

D = (8 - PINS  - pz)(s - p3)

N = l

The second example for PI control considered earlier [Eq. (15.6)]  illustrates a
situation where a term (z - zi)  appears in N.

Using the form of G given by Eq. (15.9),  the characteristic equation 1 + G =
0 may be written in the alternate form

or

, D + K N  = 0 (15.10)
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It is assumed in the remainder of this chapter that n L m, which is true for all
physical systems. This being the case, the characteristic equation will be of nth
order and have n roots, r 1,  t2,  . . . , rn  .

To develop the graphical method for determining the root locus, the charac-
teristic equation is rewritten as

(15.11)

In terms of the poles and zeros of the open-loop transfer function, Eq. (15.11)
becomes

K(s  - zm  - ZZ)“‘(S  - tm)  = -1 (15.12)
(s - Pl)(S  - P2) * * *(s  - Pn)

Since the left-hand member is in general complek,  we may write Eq. (15.12) in
the equivalent form involving magnitude and phase angle; thus

4(s  - Zl)  +  4(s  - z2)  +  ... +  40  - zd (15.14)
- [4(s  - Pl) + .** + i$(s  - pn)] = (2i + 1)7r

where i is any integer (positive or negative) or zero. Equations (15.13) and (15.14)
may be used to find the root locus by trial and error as follows: The trace of
the locus is found entirely from the angle criterion of Eq. (15.14),  which is
independent of K. After the locus is established, the gain K for any point on
it may be obtained from Eq. (15.13),  which we shall refer to as the magnitude
criterion.

To understand the procedure for determining the root locus from the angle
criterion [Eq. (15.14)],  consider the simple example

.JJ KG - zd
5 = (s  --Ias  -p2)

1

for which the poles and zeros are located as shown in Fig. 15.4. (It is convenient to
indicate open-loop poles by X and open-loop zeros by 0 in root-locus diagrams.)
To plot the root locus, a trial point (labeled sC in Fig. 15.4) is selected and the
vectors representing (s, - zt), (s,  -pt),  and (s,  -p2) are drawn. If the trial point
is correct, all the angles associated with these vectors (labeled 8t,&,  and cr  t in
Fig. 15.4),  when substituted into Eq. (15.14),  will yield an odd multiple of 7~.
For this example, the trial point sC  is correct if

(~1  - 81 - 02  = (2i + 1)~

for some value of i. The trial point is moved until the angle criterion [Eq. (15.14)]
is satisfied. After a sufficient number of trial points have been established as
correct, the root locus is drawn by connecting them  with a smooth curve. The
gains K associated with various points on the locus are determined by use of the
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I i

FlGURE  15-4
Use of the angle criterion to es-
tablish root locus.

magnitude criterion [Eq.  (15.13)].  Again with reference to the example shown
in Fig. 15.4, if we find the point sc  to be on the root locus by using the angle
criterion, then the gain is obtained from Eq.  (15.13); thus

K I SC  - Zl  I

I~c-PlII~c-P2I  = l
Solving for K gives

K = IelPl~7P21
SC  Zl

It should be emphasized that the root-locus plot is symmetrical with respect
to the real axis (i.e., complex roots occur as conjugate pairs). For this reason,
the trial-and-error procedure for finding points on the loci need be done for only
the upper half plane. The loci in the lower half plane can be  drawn from symme-
w

In principle, the trial-and-error method will produce the root-locus plot;
however, to save time it should be used only after applying the following rules,
which give a rapid guide to the general location of the loci. These rules are proved
in other texts [see Coughanowr and Koppel(1965)].  We state them below and then
illustrate their use with examples. It will probably be expedient first to glance over
the list of rules and then study them mote carefully in conjunction with Examples
15.1 and 15.2.

Rules for Plotting Root-Locus Diagrams
(Negative Feedback)
In the following rules n L 112.

RULE 1. The number of loci or branches is equal to the number of open-loop
l poles, n.



ROOTLQCUS 185

RULE 2. The root loci begin at open-loop poles and terminate at open-loop zeros.
The termination of (n - m) of the loci will occur at the zeros at infinity along
asymptotes to be described later. In the case of a q&order  pole? q loci emerge
from it. For a qth-order zero, q loci terminate there.

RULE 3. LOCUS ON REAL AXIS. The real axis is part of the root locus when
the sum of the number of poles and zeros to the right of a point on the real axis is
odd. It is necessary to consider only the real poles and zeros in applying this rule,
for the complex poles and zeros always occur in conjugate pairs and their effects
cancel in checking the angle criterion for points on the real axis. Furthermore, a
q&order  pole (or zero) must be counted q times in applying the rule.

RULE 4. ASYMPTOTES. There are (n - m)  loci that approach (as K + ~0)
asymptotically (n - m)  straight lines, radiating from the center #gravity  of the
poles and zeros of the open-loop transfer function. The center of gravity is given
by

2Pj  - 27.i

y=j=l i=l (15.15)
n - m

These asymptotic lines make angles of 7r[(2k  + l)l(n  - m)] with the real axis
and are, therefore, equally spaced at angles 2d(n  - m) to each other (k =
0,1,2..., n - m - 1).

RULE 5. BREAKAWAY POINT. The point at which two root loci, emerging
from adjacent poles (or moving toward adjacent zeros) on the real axis, intersect
and then leave (or enter) the real axis is determined by the solution of the equation

(15.16)

These loci leave (or enter) the real axis at angles of -+42.  Equation (15.16) is
solved by trial by checking it for various test points, s = s c,  on the real axis
between the poles (or zeros) of interest. For real poles or zeros, the terms in the
denominator of Eq.  (15.16) are obtained by simply measuring distances along the
real axis between the test point and the poles and zeros. If a pair of complex
poles, pi = ui ? jbi.,  am present, add to the right side of Eq.  (15.16) the term

2(S - Ui)
(S - ai)*  + bf

*A pole pa  of order q is present in the open-loop transfer function if the denominator of G contains
(S  - p,)q.  A zero za  of order q is present if the numerator of G contains (S  - zn)q.
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(This term accounts for both poles of the complex pair.) This term is merely the
result of simplifying the sum

1 1
s - ai - jbi

+
S - Qj  + jbi

For a pair of complex zeros, add a similar term to the left side of Eq. (15.16).

RULE 6. ANGLE OF DEPARTURE OR APPROACH. There are q loci emerging
from each qth-order open-loop pole at angles determined by

e = +[ C2k  + l)n  + T&@a - Zi)  - 2 &@a  - pj)]
i = l j=l

it=a
(15.17)

k  =0,1,2  ,...,  q - l

where pa is a particular pole of order q. Each of the m loci that do not approach
the asymptotes will terminate at one of the m zeros. They Will approach their
particular zeros at angles

(2k+1)~+~4(zb-pj)-~4(zb-zi)
j=l i = l 1

i f b (15.18)

k = 0, 1,2, . . . , v - 1

where Zb  is a particular zero of order v. For simple poles (or zeros) on the real
axis, the angle of departure (or approach) will be 0 or 7r.

An analog from potential theory is useful in plotting a root-locus diagram. It
may be shown that the loci correspond to the paths taken by a positively charged
particle in an electrostatic field which is established by poles (positive charges)
and zeros (negative charges). In general, we may expect a locus to be repelled by
a pole and attracted toward a zero.

Another general aid to plotting the loci is to be aware of the fact that for
n - m  2 2,thesumoftheroots(rt+r2+ * 1.  + r,)  is constant, real, and indepen-
dent of K. This requires that motion of branches to the right be counterbalanced
by the motion of other branches to the left.

Most of the open-loop transfer functions encountered in single-loop chemical
process control systems will have all their poles on &he real axis. In exceptional
cases where the feedback path includes second-order measuring elements, such as
a pressure transmitter, the open-loop transfer function will contain complex poles,
but very often they will be located so far from the remaining dominant poles that
they can be ignored.

These rules and guides will now be explained by applying them to specific
examples.

.
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(a)  ’
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FIGURE 15-5
Root-locus constmction  for Example

i I

t
- 1

(b)

K
’  - (a+l)(r+2)(~+3)

15.1.

Example 15.1. Plot the root-locus diagram for the open-loop transfer function:*

K
G = (3 + l)(S + 2)(s + 3)

In general, our stepwise  procedure will follow the same order in which the rules
were presented.

1 .

2 .
3 .

Plot the open-loop poles as shown in Fig. 15.5a.  The poles are indicated by X .
There are no open-loop zeros for this example.
(Rule 1) Since we have three poles, there are three branches.
(Rule 3) A portion,of  the locus is on the real axis between -1 and -2 and
another portion is to thk  left of -3.

*To grasp more easily the graphical procedure  for plotting the mot locus, the reader should actually
plot these examples according to the steps given in the solution. Also note that this is the same
example that was treated by algebraic methods at the beginning of this chapter.
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4. (Rule 4) Since n - m = 3, we have three asymptotes and the center of gravity
is y = (-3 - 2 - 1)/3  = -2. Angles which the asymptotes make with the real
axis are 7r/3,  31rl3,  and 51~13.  These asymptotes are shown in Fig. 15.5a.

With these few steps completed, a rough sketch of the root-locus diagram
can be made as follows: Since the real axis to the left of -3 is an asymptote
and one branch emerges from the pole at -3, it should be clear that one entire
branch is the real axis to the left of the -3. Furthermore, from the fact that two
loci must emerge from the poles - 1 and -2 and that the real axis between these
poles is part of the locus, we see that two loci move toward each other along
the real axis between - 1 and -2 and eventually meet at some common point.
Since the location of the asymptotes is known, it is therefore necessary that the
two loci that meet on the real axis must break away and eventually follow the
asymptotes. From these observations, we could sketch a root-locus diagram that
closely resembles that of Fig. 15.5~.  If the breakaway point and the crossings
of the imaginary axis were known, the sketch could be made with considerable
accuracy. We now continue the example by applying Rule 5 to find the breakaway
point and the Routh test to find the crossings of the imaginary axis.

5. Breakaway point. (Rule 5) The roots emerging from - 1 and - 2 move toward
each other until they meet, at which point the loci leave the real axis at angles
of + 7r/2.  The breakaway point is found from Eq. (15.16) as follows

01

o =
1 1 1

-+-+-
s -Pl s-p:! s -p3

1
rJ=L-+

1 1
s+l

-+-
s+2 s+3

Solving this by trial and error gives

s = -1.42

6. To find the points at which the loci cross the imaginary axis, the Routh test
(theorem 3) of Chap. 14 may be used. Writing the characteristic equation D +
KN = 0 in polynomial form gives

D + KN = (s + l)(s  + 2)(s -t 3)+ K = 0

or

s2 +6s2 + 11s  + K +6 = 0

from which we can write the Routh array:

ROW

--I--1 1 1 1

2 6 K-k6
3 bl
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The theorem states that, if one pair of roots are on the imaginary axis and all
others in the left half plane, all the elements of the nth row must be zero. From
this we obtain for the element bl

b, = (6)Ul)  - W  + 6)  = o

6

Solving for K,

K = 60

A root on the imaginary axis is expressed as simply ju. Substituting s = j a and
K = 60 into the polynomial gives

-ju3 - 6a2 + llaj + 66 = 0

(66 - 6a*) + (11~ - u3)j = 0

Equating the real part or the imaginary part to zero gives

a  =  r fi =  23.32

Therefore the ioci intersect the imaginary axis at + j fi and - j fi.
7. Having found these general features of the root-locus plot, we can sketch the root

locus. If it is desirable to have a more accurate plot of the loci, the construction
is continued by the trial-and-error method described earlier in this chapter. + To
illustrate the method of finding roots, suppose the trial point, si  = -0.75 + 1.5 j
of Fig. 15.5b, is selected. This point is checked by the angle criterion [Eq.
(15.14),  which for this example may be written

or

&(s + 1) + i$(s  + 2) + &(s + 3) = (2i + 1)Tr

I31  + I32 + 03 = (2i + l)?r

From Fig. 15.5b, these angles are found to be

19~  = 81’ e* = 51° 03 = 34O

and we have

81’ + 51’ + 34’ = 166’ + (2i + 1)7r

+Several  computer software packages are now available for plotting the root-locus diagram. For
example, the program CC is especially useful for root-locus plotting. Details on CC and other
software packages are given in Appendix 34A (of Chap. 34). Evans (1954, 1948),  who developed
the root-locus method, produced an instrument for plotting root-locus diagrams called the Spirule.
The Sprirule was essentially a drawing instrument that was used to add angles by rotating an arm
with respect to a disk. The Sprirule, which is no longer available, is now obsolete as a result of the
availability of computer programs for plotting root-locus diagrams.
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Shifting the  trial point horizontally to the left will increase the sum of the angles.
As a second trial point, sy  = - 0.95 + 1.5 j gives for the sum of the angles

88’ + 56’ + 37’ = 181’ z TT

This result is sufficiently close to V, which is (2; + 1)~ with i = 0, and we
accept the point as one on the locus. In this manner, more points on the locus
can be found and a curve drawn through them.

8. Gain. To determine the gain at various points along the loci, the magnitude
criterion [Eq. (15.13)] is used. For example, if the gain at s = -0.95 + jl.5
(labeled si  in Fig. 15.56), is wanted, we measure the distances directly with a
ruler; thus

Is -p1  1 = 1.50

1 s -p2  1 = 1.82

Is-p31  = 2.52

-2,

(It is important to measure the vector lengths in units that  are consistent with
those used on the axes of the graph.)

Substituting these values into Eq. (15.13) gives

K
(1.50)(1.82)(2.52)  = ’

or K = (1.50)(1.82)(2.52)  = 6.8. To find the point corresponding to K = 6.8
on the branch along the real axis to the left of p3  requires a trial-and-error solution
if the graphical approach is used. For example, if s = -4.5 is tried, we obtain

Is-plI=3.5

Is-p21  = 2.5

1 s -p3  I = 1.5

from which we get

K = (1.5)(2.5)(3.5)  = 13.1

We see that s = -4.5 does not correspond to a gain of 6.8. It is therefore
necessary to try other values of s greater than -4.5 until the desired value of
K = 6.8 is obtained. Although this procedure may seem very tedious, the actual
calculations go quite quickly as the reader will discover while working out this
example.

We also may find the root on the real axis more directly by applying the
following theorem from algebra:

The sum of the  roots (rl + r2  + * . * + rn)  of the nth-order polynomial
equation

is given by

aox’  + alx”-l  + ..* + a, = 0

(rl + 12 + ‘..+r,)  = -z
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In this case, we have just found the complex roots for K = 6.8 to be

r2, r3 = -0.95 -c  j 1.5

The polynomial equation is

(s + l)(s  + Z)(s  + 3) + K = 0
which can be expanded into

s3  + 6s2  + 11s  + (K + 6) = 0

According to the theorem

r1 + (-0.95 + j1.5) + (-0.95 - j1/5)  = -4

or

6 = -[rl - 2(0.95)]

or

rl = -4.10

All the detailed steps needed to plot the root locus for this problem have been
discussed. The complete locus is shown in Fig. 15.5~.  This same plot is also shown
in mom  detail in Fig. 15.2.

Example 15.2. Consider the block diagram for the control system shown in Fig.
15.6. This system may represent a two-tank, liquid-level system having a PID con-
troller and a first-order measuring lag. The open-loop transfer function is

1 + 2~13 + 113s
G = K”(20s  + l)(lOs  + 1)(0.5s + 1)

Rearranging this into the standatd  form, KNID, gives

G = K(s  - ZI)(S - ~2)

es  - PlXS - PZ)(S - P3)

where  K = Kc/150
Zl  =  -0 .5
.Q  =  -1

p1  = -0.05
p2 = -0.1
p 3  =  -2



1 9 2 LINEAR txusmm~ SYSTEMS

FIGURE  15-7
Root-locus diagram for Example 15.2.

ln  this case, them  am  four poles at 0, -0.05, -0.1, and -2 and two zems at
-0.5 and -1. These am  plotted in Fig. 15.7. Note that the three-action controller
contributes the pole at the origin and the zeros, -0.5 and - 1. The steps for plotting
the root-locus diagram are as follows:

1. Since them  am  four poles, there  are four branches emerging from them.
2. Three portions of the root locus are on the real axis between 0 and -0.05,

between -0.10 and -0.5, and between -1 and -2.
3. Since n -m = 2, there am  two asymptotes, and the center of gravity is

y = (-0.05 - 0.1 - 2) - (-0.5 - 1.0) =
2

-0.325

The angles that the asymptotes make with the real axis are *&I.  These 2tSymptOkS
are  shown in Fig. 15.7.

At this stage, we can sketch part of the root-locus diagram. Since the locus
is on the real axis between -0.1 and -0.5 and between -1 and -2, it should
be evident that one branch moves from  the pole at -2 to the zero at -1 and an-
other branch moves from the pole at -0.1 to the zero at -0.5. The remaining two
branches move from the poles at 0 and -0.05 toward  each other along the teal axis
until they meet, at which point they must break away from  the real axis and move
in some way toward  the vertical asymptotes that intersect the real axis at -0.325.
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With the information now available, it is difficult to continue the sketch with confi-
dence, for the breakaway point is so close to the origin that there is some likelihood
that the loci will move into the right half plane before approaching the asymptote. If
this should occur, each locus would have to cross the imaginary axis twice, in which
case there would be an intermediate range of K over which the system is unstable.
On either end of this range of K, the system is stable. This condition is called
conditional stability. The possibility of the locus crossing the imaginary axis twice
is suggested by the analog from potential theory that was mentioned earlier. This
can be explained as follows: immediately after the locus leaves the real axis at the
breakaway point, it has a tendency to move to the right half plane because the pole
at -0.1 “repels” the locus. However, after the locus moves to a point sufficiently
far from this repelling pole, it is attracted mote  strongly by the two zetas  at -0.5
and - 1 and has the tendency to return  to the left half plane where we know it must
eventually approach the vertical asymptote. Actually to determine whether or not
the locus moves into the right half plane requires that the points at which the loci
cross the imaginary axis be determined. This can be done by use of the Routh test
as illustrated in Example 15.1. The details of the calculation will not be given here;
however, the reader can show that there are two values of gain K which give a pair
of roots of the characteristic equation that lie on the imaginary axis. These gains
and corresponding roots are approximately

K = 0.004 or K,  = 0.6 s = rjO.1

K = 2.4 o r KC  = 360 s = kjl.1

From these results, we conclude that the system will oscillate with constant amplitude
with a frequency w  = 0.1 radltime when K,  = 0.6; it will also oscillate at constant
amplitude with w = 1.1 when K,  = 360. The system is unstable for 0.6 < K,  <
360. The system is stable for K,  < 0.6 and for K,  > 360. The complete root-locus
diagram is sketched in Fig. 15.7.

SUMMARY
In this chapter, the rules for plotting root-locus diagrams have been presented
and applied to several control systems. It should be emphasized that the basic
advantage of this method is the speed and ease with which a rough sketch of the
loci can be obtained. This sketch frequently gives much of the desired information
on stability. A few further calculations of points on the locus are usually all that
are necessary to obtain accurate, quantitative behavior of the roots.

The root locus for variation of parameters other than K,, such as ~0, has
not been discussed here. The method of constructing this type of diagram is
similar to that presented here and is discussed in detail in other texts [see Wilts
U9fwl.

Once the roots are available, the response of the system to any forcing
function can be obtained by the usual procedures of partial fractions and inversion
given in Chap. 3.
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APPENDIX 15A

Table 15.1A  gives a BASIC computer program for finding the roots of a polyno-
mial equation by the Lin-Bairstow method [see Hovannessian and Pipes (1969)].
To use this program, arrange the polynomial equation in the form

a,s”  + u,-l&s”-l + u,-*r2  + . . . + a, = 0

Before running the program, a DATA statement is used to list the order (n) and
the coefficients of the polynomial equation as follows:

DATA n, a,,, a,,-~, . . ., a,

An example of the use of the root-finding program is shown in Table 15.2A;  the
example involves finding the  roots of Eq. (15.5) for the case of K = 26.5.

TABLE 15.1A
BASIC program for finding roots of a polynomial equation

LO REM ROOTS OF POLYNOMIAL EQUATION
20 REM  USING LIN-BAIRSTOW METHOD
30 REH  AN*S*+N  + A(N-L)*S**(N-1)  + A(N-Z)*S**(N-2)  + . ..+ A0 = II
110 REM DATA N, AN, A(N-II), . . ..A0
50 REM REFERENCE: DIGITAL COHP HETH  IN ENGRG, HOVANNESSIAN, S.A.

AND L. A. PIPES
LOO  DIM A(LO),B(LO),C(LO),D(10)
LLO  READ N
120  PRINT "DEGREE"N
130  PRINT "COEFFICIENT"

0 STEP -LI,'+0  FOR I = N TO
l&O  READ A(I)
Iah0  PRINT A(I)  ;
I170  NEXT I
LAO  PRINT
190  PRINT
200 LET R=A(L)/A
220  LET S=A(O)/A
220  LET B(N)=A(N
230  LET C(N)=0
2110  LET D(N)=0
250  LET B(N-lt)=A

(2)
(2)
1

(N-L);R*B(N)
260 LET C(N-L)=-B(N)
270 LET D(N-L)=O
280  FOR I=2  TO N-Z
290 LET B(N-I)=A(N-I)-R*B(N-I+L)-S*B(N-I+Z)
300 LET C(N-I)=-B(N-I+l,)-R*C(N-I+L)-ScC(N-1+2)
310 LET D(N-I)=-B(N-1+2)-S*D(N-1+2)-R*D(N-I+Z)
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TABLE 15.1A  (Continued)
BASIC program for finding roots of a polynomial equation

320 NEXT I
330 LET Rl=A(la)-R*B(Z)-S*B(3)
340 LET Slt=A(O)-S*B(i?)
350 LET T=-B(Z)-R*C(i?)-S*C(3)
3b0  LET U=-B(3)-S*D(3)-R*D(Z)
370 LET V=-S*C(Z)
380 LET W=-B(Z)-S*D(2)
390 LET R2=(-RL*W+SL*U)/(T*W-U*V)
rlO0  LET SZ=(-T*SL+V*RL)/(T*W-lJ*V)
'410  LET S=S+S2
'420  LET R=R+R2
930  IF ABS(R2)<.00001 TEEN 'l50
440 GOT0 220
1150 LET G=R*R-rl*S
rlb0  IF G<O  TEEN '490
470 PRINT "ROOTS";-R/Z;"+OR-";SQR(G)/Z
480 GOT0 500
990 PRINT "ROOTS";-R/Z;"+OR-'t;SQR(-G)/Z;"J"
500 LET N=N-2
510 PRINT
520 IF N=O  THEN b30
530 FOR I = N TO 0 STEP-L
5110 LET A(I)=B(I+Z)
550 NEXT I
5bO  IF N>2  THEN 200
570 IF NC2  THEN bL0
580 LET R=A(N-L)/A(N)
590 LET S=A(N-2)/A(N)
bO0  GOT0 '450
bL0  PRINT "ROOT",-A(#-L)/A(N)
b20 DATA 3 L,b,LLzsS
630 END j,fl-;&pic,cd*5

TABLE 15.2A
Use of BASIC program of Table 15.1A  for finding roots of Eq. (15.5):
8 + t$ + 11s + (K  + 6) = 0 with K = 29;.5

RUN
DEGREE 3
COEFFICIENT

L b ZL 32.5

ROOTS-.'t53'#395  +OR- 2.485065 JI

ROOT -5.093Li?L
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PROBLEMS
15.1.

15.2.

15.3.

15.4.

Draw the root-locus diagram for the system shown in Fig. P15.1 where GC =
K,(l + 0.5s  + l/s).

FIGURE P15-1

Draw the root-locus diagram for the system shown in Fig. P13.4 for (a) 71  =
0.4 mitt  and (b)  ~1 = 0.2 min. (The proportional controller is replaced by a PI
controller.) Determine the controller gain that just causes the system to become
unstable. The values of parameters of the system am:

K, = valve constant 0.070 cfm/psi

K, = transducer constant 6.74(in. pen travel)/@  of tank level)
R2 = 0.55 ft level/&n

q  = time constant of tank 1 = 2.0 min
92 = time constant of tank 2 = 0.5 min

The controller gain K, has the units of pounds per square inch per inch of pen
travel.
Sketch the root-locus diagram for the system shown in Fig. P14.2. If the system
is unstable at higher values of K,, find the roots on the imaginary axis and the
corresponding value of K,.
Sketch the root loci for the following equations:

K
@) l+ (s + 1)(2s  + 1) = O

(b) 1 +
K

s(s + 1)(2s  + 1) =
0

Cc)  1 +
K(4s + 1)

s(s + 1)(2s  + 1) =
0

(4 1+
K(1.5~ + 1)

s(s + 1)(2s  + 1) =
o

(4 1 +
K(0.5~ + 1)

s(s + 1)(2s  + 1) =
o

On your sketch you should locate quantitatively all poles, zeros, and asymptotes. In
addition show the parameter that is being varied along the locus and the direction in
which the loci travel as this parameter is increased.
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15.5. For the control system shown in Fig. P15.5.
Casel:rb=$

case2:Q)=$

(a) Sketch the root-locus diagram in each case.
(b)  If the system can go unstable, find the value of Kc that just causes instability.
(c) Using Theorem 3 (Chap. 14) of the Routh test, find the locations (if any) at

which the loci cross into the unstable region.
15.6. Draw the root-locus diagram for the control system shown in Fig. P15.6.

(a) Determine the value of Kc needed to obtain a root of the characteristic equation
of the closed-loop response which has an imaginary part 0.75.

(b)  Using the value  of K, found in part (a), determine all the other roots of the
characteristic equation from the mot-locus diagram.

(c) If a unit impulse is introduced into the set point, determine the response of the
system, C(t).

FlGURE  PM-6

15.7. Plot the root-locus diagram for the system shown in Fig. P15.7. We may consider this
system to consist of a process having negligible lag, an underdamped, second-order
measuring element, and a PD controller. This system may approximate the control
of flow rate,  in which case the block labeled Kp would represent a valve having
no dynamic lag. The feedback element would represent a flow measuring device,
such as a mercury manometer placed across an orifice plate. Mercury manometers
are known to have underdamped, second-order dynamics. Plot me diagram for
32) = ll3.

K,(1+7gs)-  K,=O.2  WC
L

1
0.2r2+WS+1 FIGURE  P15-7
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15.8. Draw the root-locus diagram for the proportional control of a plant having the
transfer function 2/[(s + 1)3].  Determine the roots on the imaginary axis and the
corresponding value of K, .

15.9. (a) Show how you would adopt the usual root-locus method for variation in con-
troller gain to the problem of obtaining the root-locus diagram for variation in
TD  for the control system shown in Fig. Pl5.9  for K,  = 2.

(b) Plot the root-locus diagram for variation in rD  with K,  = 2.
(c) Determine the response of the system C(t) for a unit-step change in R for

TD = 0.5, and K,  = 2. Sketch the response. What is the ultimate value of
C(t)?

Hint: Rearrange the open-loop transfer function to be in the form

G(s) = TDS
s*  + 1.5s + 1.5

Then apply the usual root-locus rules with rD  taking the place of K,.

FIGURE P15-9
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CHAPTER

16
INTRODUCTION :
TOFREQUENCY

RESPONSE

Chapters 5 and 8 discussed briefly the response of first- and second-order systems
to sinusoidal forcing functions. These frequency responses were derived by using
the standard Laplace  transform technique. In this chapter, a convenient graphical
technique will be established for obtaining the frequency response of linear sys-
tems. The motivation for doing so will become apparent in the following chapter,
where it will be found that frequency response is a valuable tool in the analysis
and design of control systems.

Many of the calculations in this chapter make use of complex numbers. The
reader should review the two forms of complex numbers (rectangular and polar)
and the basic operations used on complex numbers.

SUBSTITUTION RULE
A Fortunate Circumstance
Consider a simple first-order system with transfer function

G(s)  = -&

Substituting the quantity jw for s in Eq. (16.1) gives

(16.1)

G(jw) =
1

jor+l

201
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We may convert this expression to polar form by multiplying numerator and
denominator by the conjugate of (jar + 1); the result is:

Ww)  =
-jw7  + 1 1 .07

(j w-r  + l)(--jar  + 1) = 1 + 0272  - 1 1 + 0272
(16.2)

To convert a complex number in rectangular form (z  = a + jb)  to polar form
(I  z 1 42)  one uses the relationships:

1 z I= Ja2+b2 and &z,  = tan-’ $

Applying these relationships to Eq. (16.2) gives

G(jo)  =
J&T

& tan-‘(  -07) (16.3)

The quantities on the right side of Eq. (16.3) are familiar. In Chap. 5 we found
that, after sufficient time had elapsed, the response of a first-order system to a
sinusoidal input of frequency w is also a sinusoid of frequency w.  Furthermore,
we saw that the ratio of the amplitude of the response to that of the input is
l/ &%%  and the phase difference between output and input is tan-‘(  --or).
Hence, we have shown here that for the frequency response of a first-order system,

Phase angle = r;G(jw)

That is, to obtain the amplitude ratio (AR) and phase angle, one merely substitutes
jw for s in the transfer function and then takes the magnitude and argument (or
angle) of the resulting complex number, respectively.

Example 16.1. Rework Example 5.2. The pertinent transfer function is

G(s) = 1
0.1s + 1

The frequency of the bath-temperature variation is given as lO/rr  cycledmin which
is equivalent to 20 rad/min.

Hence, let

to obtain

s = 20j

1
G(20j)  = ~

2j + 1

In polar form, this is

G(20j)  = 5 4  - 63.5’

which agrees with the previous result.
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Generalization

At this point, it is necessary to ascertain whether or not we may generalize the
result of the last section to other systems. This can be done by checking the result
for second-order systems, third-order systems, etc. However, it is more satisfying
to prove the general validity of the result as follows. (The reader may, if desired,
accept the result as general and skip to Example 16.2. We remark here that an
important restriction on this rule is that it applies only to systems whose transfer
functions yield stable responses.)

An nth-order linear system is characterized by an nth-order differential equa-
tion:

d”Y
an  dt”
-+a.-,$+...  _+alg+aoY  = X ( t ) (16.4)

where Y is the output variable and X(t) is the forcing function or input variable.
For specific cases of Eq.  (16.4),  refer to Eq.  (5.5) for a first-order system and
Eq. (8.4) for a second-order system. If X(t) is sinusoidal

X(t) = Asinwr

the solution of Eq. (16.4) will consist of a complementary solution, and a partic-
ular solution of the form

Yp(t)  = Cl sinwt + C2cosmt (16.5)

If the system is stable, the roots of the characteristic equation of (16.4) all lie
to the left of the imaginary axis and the complementary solution will vanish
exponentially in time. Then YP is the quantity previously defined as the sinusoidal
or frequency response. If the system is not stable, the complementary solution
grows exponentially and the term frequency response has no physical significance
because Yp(t)  is inconsequential.

The problem now is the evaluation of Cl and C2 in Eq.  (16.5). Since we
are interested in the amplitude and phase of Yp(t), Eq. (16.5) is rewritten as

Yp = D1  sin (wt + 02) (16.6)

as was done previously [compare to Eq. (5.23) and related equations].
It will be convenient to change X(t) and Yp(t)  from trigonometric to expo-

nential form, using the identity

Thus,

sin8 =
,je - e-jO

2j

xtt) = A(ejmr  _ e-jy
Li

and from Eq. (16.6)

ypct)  = $[ejW+D2) _ e-jW+02)]

(16.7)

(16.8)
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Substitution of Eqs. (16.7) and (16.8) into Eq. (16.4) yields:

~~ ej(ot+D2)

2j

[a,(jo)" + un-l(jco)n-l + *f. + al(ju)  + ao]

Dle-j@r+D2)
-

2.i

[a,(- jto)n  + a,-I(- jm)n-l  + *.  . + a~(-jo)  + a01

A(
z-.--e

2j

jot _ e-jor) (16.9)

The coefficients of ejot  on both sides of Eq. (16.9) must be equal. Hence,

DlejD2[un(jo)”  + un-l(jW)‘-’ + .**  + ul(jw)  + a~] = A (16.10)

Equation (16.10) will be satisfied if and only if

1 Dl=-
u,(jw)n  + a,-l(jw)“-l  + ... + ul(jo)  + a0 A

(16.11)

1
4 _ =

u,(jo)”  + u,-l(jw)n-l  + ***  + ul(jo)  + a0
02

But D1/A  and 02  are the AR and phase angle of the response, respectively, as
may be seen from Eq. (16.6) and the forcing function. Furthermore, from Eq.
(16.4) the transfer function relating X and Y is

Y(s) 1- =
X(s) unsn + un-lF1  + . ** + u1.s  + a0

(16.12)

Equations (16.11) and (16.12)*  establish the general result.

Example 16.2. Find the frequency response of the system with the general second-
order transfer function and compare the results with those of Chap. 8. The transfer
function is

1

Putting s = jw  yields

r2s-2  + 2lTS  + 1

1
1 - +r2u2 + j2cwr

which may be converted to the polar form

1

*In writing this equation, it is assumed that X and Yhave been written as deviation variables, so that
initial conditions are zero.
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Hence,

AR=
1

Ju - w*,*y  -I-  (2507)*
(16.13)

-25w7
Phase angle = tan-’ I _ w2,2

which agree with Eq. (8.40).

Tkansportation  Lag
The response of a transportation lag is not described by Eq. (16.4). Rather, a
transportation lag is described by the relation

Y(t) = X(t - 7) (16.14)

which states that the output Y lags the input X by an interval of time r. If X is
sinusoidal,

X = A sin wt

then from Eq. (16.14)

Y = A sin w(t - T)  = A sin (ot - wr)

It is apparent that the AR is unity and the phase angle is (-UT).
To check the substitution rule of the previous section, recall that the  transfer

function is given by

Putting s = j,,

Then,

G(s) = Y(s)
X(s)=e

-TS

G(jw) = e-joT

m =I edjoT (= 1

Phase angle = 4e-jwT  = -wr

and the validity of the rule is verified.

(16.15)

Example 16.3. The stirred-tank heater of Chap. 1 has a capacity of 15 gal. Water
is entering and leaving the tank at the constant rate of 600 lb/mm.  The heated water
that leaves the tank enters a well-insulated section of 6-in.-ID pipe. ILvo  feet from
the tank, a thermocouple is placed in this line for recording the tank temperature,
as shown in Fig. 16.1. The electrical heat input is held constant at 1,000 kw.

If the inlet temperature is varied according to the relation

Ti  = 75 + 5sin46t

where Ti  is in degrees Fahrenheit and t is in minutes, find the eventual behavior of
the thermocouple reading Tm.  Compare this with the behavior of the tank temperature
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T,=75+5 sin 46t
6 0 0  Itfminw

FIGURE 16-1
Tank-temperahue system for Example 16.3.

T. It may be assumed that the thermocouple has a very small time constant and
effectively measures the true fluid temperature  at all times.

The problem is to find the fresuency  response of T,,, to Ti  . Deviation variables
must be used. Define the deviation variable T/ as

T/ = Ti - 75 = 5sin46t

To define a deviation variable for T,,,,  note that, if Ti were held at 75”F, T,,,  would
come to the steady state satisfying

4s = wWm, - Ti,)

This may be solved for Tms:

Tms = $+Ti,  = U~~)(L  ~)(O.OW  + 75  = 1700F
ww1  .O)

Hence, define
T; = Tm - 170

Now the overall system between T/ and T& is made up of two components
in series: the tank and the 2-ft section of pipe. The transfer function for the tank is

1
Gl(s)  = -

qs  + 1

where, as we have seen before, 71 is given by

PV (~.3)(15)
71=  - = = 0.202min

W WW.48)

The transfer function of the 2-ft section of pipe, which corresponds to a transportation
lag, is

Go  = e-qs

where Q is the length of time required for the fluid to transverse the length of pipe.
This is

72  = g _ mw.wo.lg7)- = 0.0396 min
V 6 0 0

The factor 0.197 is the cross-sectiona) area of the pipe in square feet.
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Since the two systems are in series, the overall transfer function between T/
and Th is

g  = e-qs e -0 .0396s
- =

Ti’ 71s + 1 0.202s + 1

To find the AR and phase lag, we merely substitute s = 46j and take the magni-
tude and argument of the resulting complex number. However, note that we have
previously derived the individual frequency responses for the first-order system and
transportation lag. The overall transfer function is the product of the individual trans-
fer functions, hence, its magnitude will be the product of the magnitudes and its
argument the sum of the arguments of the individual transfer functions. In general,
if

G(s) = Gl(s)G2(s)..*Gn(s)

then

IGW)l  = lGlW)l  1G2W>1*.  .bXb>l

4Ww)  = &Gl(jw)  + 4G2Go)  + ... + 4GAjw)

This rule makes it very convenient to find the frequency response of a number of
systems in series.

Using Eq. (16.3) for the tank, .

AR =
1 1

=  - =  0.107
(46) x 0.202)2 + 1 9.35

Phase angle = tan-1[(-46)(0.202)]  = -84’

For the section of pipe, the AR is unity, so that the overall AR is just 0.107. The
phase lag due to the pipe may be obtained from Eq. (16.15) as

Phase angle = -WQ = -(46)(0.0396)  = -1.82 rad = -104’

The overall phase lag from T/ to T,& is the sum of the individual lags,

~$5 = -84- 104 = -188’
I

Hence

Tm = 170 + 0.535 sin(46t  - 188’)

For comparison, a plot of Tf, Th, and T’ is given in Fig. 16.2, where

T’ = tank temperature - 170°F

It should be emphasized that this plot applies only after sufficient time has elapsed
for the complementary solution to become negligible. This restriction applies to all
the forthcoming work on frequency response. Also, note that, for convenience of
scale, the tank and thermocouple temperatures have been plotted as 2T’ and 2Th,
respectively.
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+-Overall  lag, 188’~

Time +

FIGURE 16-2
Temperahue  variation in Example 16.3.

A Control Problem
An interesting conclusion may be reached from a study of Fig. 16.2. Suppose
that we are trying to control the tank temperature, using the deviation between
the thermocouple reading and the set point as the error. A block diagram for
proportional control might appear as in Fig. 16.3, where Tf is replaced by U , T ’
by C, and TA  by B to conform with our standard block-diagram nomenclature.
The variable R denotes the deviation of the set point from 170°F and is the desired
value of the deviation C. The value of R is assumed to be zero in the following
analysis (control at 170°F). The following arguments, while not rigorous, serve to
give some insight regarding application of frequency response to control system
analysis.

The heat being added to the tank is given in deviation variables as -K,B.
With reference to Fig. 16.2, which shows the response of the uncontrolled tank
to a sinusoidal variation in U, it can be seen that the peaks of U and B are almost
exactly opposite because the phase difference is 188“. This means that, if the loop

B=T;

-5’e

FIGURE 16-3
Proportional control of heated, stirred tank.
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were closed, the control system would have a tendency to add more heat when
the inlet temperature Ti  is at its high peak, because B is then negative and -K,B
becomes positive. (Recall that the set point R is held constant at zero.) Conversely,
when the inlet temperature is at a low point, the tendency will be for the control
system to add less heat because B is positive. This is precisely opposite to the
way the heat input should be controlled.

Therefore, the possibility of an unstable control system exists for this partic-
ular sinusoidal variation in frequency. Indeed, we shall demonstrate in Chap. 17
that, if K, is taken too large, the tank temperature will oscillate with increasing
amplitude for all variations in U and hence we have an unstable control sys-
tem. The fact that such information may be obtained by study of the frequency
response (i.e., the particular solution for a sinusoidal forcing function) justifies
further study of this subject.

BODE DIAGRAMS
Thus far, it has been necessary to calculate AR and phase lag by direct substitution
of s = jw into the. transfer function for the particular frequency of interest.
It can be seen from Eqs. (16.3),  (16.13),  and (16.15) that the AR and phase
lag are functions of frequency. There is a convenient graphical representation of
their dependence on the frequency that largely eliminates direct calculation. This
is called a Bode diagram and consists of two graphs: logarithm of AR versus
logarithm of frequency, and phase angle versus logarithm of frequency. The Bode
diagram will be shown in Chap. 17 to be a convenient tool for analyzing control
problems such as the one discussed in the preceding section. The remainder of the
present chapter is devoted to developing this tool and presenting Bode diagrams
for the basic components of control loops.

First-Order System
The AR and phase angle for the sinusoidal response of a first-order system are

m=J7k
(16.16)

Phase angle = tan-‘(--or) (16.17)

It is convenient to regard these as functions of or for the purpose of generality.
From Eq. (16.16)

log AR = -; log [(w#  + l] (16.18)

The first part of the Bode diagram is a plot of Eq. (16.18). The true curve is shown
as the solid line on the upper part of Fig. 16.4. Some asymptotic considerations
can simplify this plot. As (or)  + 0, Eq. (16.16) shows that AR + 1. This
is indicated by the low-frequency asymptote on Fig. 16.4. As (07) + cc),  Eq.
( 16.18) becomes asymptotic to

log AR = - log(wr)
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10 20

1 0
d
=og .s
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0.1 -2og
8

0.01 - - 4 0

FIGURE 16-4
Bode diagram for first-order system.

which is a line of slope - 1, passing through the point

wr  =  1 AR=1

This line is indicated as the high-frequency asymptote in Fig. 16.4. The frequency
WC = VT, where the two asymptotes intersect, is known as the cornerfrequency;
it may be shown that the deviation of the true AR curve from the asymptotes is
a maximum at the corner frequency. Using wC  = l/r in Eq. (16.16) gives

AR = 1 = 0.707
Jz

as the true value, whereas the intersection of the asymptotes occurs at AR = 1.
Since this is the maximum deviation and is an error of less than 30 percent, for
engineering purposes it is often sufficient to represent the curve entirely by the
asymptotes. Alternately, the asymptotes and the value of 0.707 may be used to
sketch the curve if mote accuracy is required.

In the lower half of Fig. 16.4, we have shown the phase curve as given by
Eq. (16.17). Since

cj  = tan-‘(-au)  = - taf’(WT)

it is evident that 4 approaches 0” at low frequencies and -!W’ at high frequencies.
This verifies the low- and high-frequency portions of the phase curve. At the comer
frequency, 0,  = l/r,

c#Q = -tan-‘(o,7)  = -tan-‘(l) = -45O

There am asymptotic approximations available for the phase curve, but they are
not so accurate or so widely used as those for the AR. Instead, it is convenient
to note that the curve is symmetric about -45”.
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It should be stated that, in a great deal of the literature on control theory,
amplitude ratios (or gains) are reported in decibels. The decibel is defined by

Decibels = 20 log ia

Thus, an AR of unity corresponds to zero decibels and an amplitude ratio of 0.1
corresponds to -20 decibels. The abbreviation for the decibel is db. The value
of the AR in decibels is given on the right-hand ordinate of Fig. 16.4.

Rrst-Order  Systems in Series
The advantages of the Bode plot become evident when we wish to plot the fre-
quency response of systems in series. As shown in Example 16.3, the rules for
multiplication of complex numbers indicate that the AR for two first-order systems
in series is the product of the individual ARs:

A R =  Jz&JqTT
(16.19)

Similarly, the phase angle is the sum of the individual phase angles

r#~  = tan-‘(---wrt)  + tan-‘(7.072) (16.20)

Since the AR is plotted on a logarithmic basis, multiplication of the ARs is
accomplished by addition of logarithms on the Bode diagram. The phase angles
are added directly. The procedure is best illustrated by an example.

Example 16.4. Plot the Bode diagram for the system whose overall transfer function
i s

1
(s + l)(S + 5)

To put this in the form of two first-order systems in series, it is rewritten as

‘/s
(s + l)( 45s  + 1)

(16.21)

The time constants are q  = 1 and 72 = 4. The factor k  in the numerator corre-
sponds to the steady-state gain.

From Eqs. (16.21) and (16.19)

Hence, co2
logAR=logf-;log(w2+1)-;log  s +l[(I 1

o r

log AR = log ‘/s + log (AR)I  + log (AR), (16.22)
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where (AR)t (AR)2  are the ARs  of the individual first-order systems, each with
unity gain. Equation (16.22) shows that the overall AR is obtained, on logarithmic
coordinates, by adding the individual ARs  and a constant corresponding to the
steady-state gain.

The individual ARs  must be plotted as functions of log w rather than log (wr)
because of the different time constants. This is easily done by shifting the curves of
Fig. 16.4 to the right or left so that the comer frequency falls at w  = l/r. Thus,
the individual curves of Fig. 16.5 are placed so that the comer frequencies fall at

WC1 = 1 and w,s = 5. These curves are added to obtain the overall curve shown.
Note that in this case the logarithms are negative and the addition is downward.
To complete the AR curve, the factor log f should be added to the overall curve.
This would have the effect of shifting the entire curve down by a constant amount.
Instead of doing this, the factor f is incorporated by plotting the overall curve as
ARti  instead of AR. This procedure is usually more convenient.

Asymptotes have also been indicated on Fig. 16.5. The sum of the individual
asymptotes gives the overall asymptote, which is seen to be a good approximation
to the overall curve. The overall asymptote has a slope of zero below o  -= 1, - 1 for
w  between 1 and 5, and -2 above w = 5. Its slope is obtained by simply adding
the slopes of the individual asymptotes.

To obtain the phase angle, the individual phase angles are plotted and added
according to Eq. (16.20). The factor i has no effect on the phase angle, which
approaches - 180” at high frequency.

FIGURE 16-5
Bode diagram for 0.2/[(s  + 1)(0.2s  + l)].
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Graphical Rules for Bode Diagrams
Before proceeding to a development of the Bode diagram for other systems, it is
desirable to summarize the graphical rules that were  utilized in Example 16.4.

Consider a number of systems in series. As shown in Example 16.3, the
overall AR is the product of the individual ARs,  and the overall phase angle is
the sum of the individual phase angles. Therefore,

and

log (AR) = log (AR), + log (AR), + . . . + log (AR), (16.23)

4 = 41 + 42 + . . . + 4%

where n is the total number of systems. Therefore, the following rules apply to
the true curves or to the asymptotes on the Bode diagram:

1. The overall AR is obtained by adding the individual ARs.  For this graphical
addition, an individual AR that is above unity on the frequency response di-
agram is taken as ‘positive; an AR that is below unity is taken as negative.
To understand this, recall that the logarithm of a number greater than one is
positive and the logarithm of a number less than one is negative. A convenient
way to combine two or more individual AR curves is to use a pair of dividers
to transfer distances at a selected value of w.

2. The overall phase angle is obtained by addition of the individual phase angles.
3. The presence of a constant in the overall transfer function shifts the entire AR

curve vertically by a constant amount and has no effect on the phase angle. It
is usually more convenient to include a constant factor in the definition of the
ordinate.

These rules will be of considerable value in later examples. Let us now
proceed to develop Bode diagrams for other control system components.

The Second-Order System
As shown in Example 16.2, the frequency response of a system with a second-
order transfer function

G(s) =
1

$92  + 257s  + 1

is given by Eq. (16.13),  repeated here for convenience,

AR =
1

(1 - 6JV)2  + (25wr)2
(16.13)

Phase angle = tan- ’
-2507

1 - (OX)2
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FlGURJI 16-6
Bode diagram for second-order system 1/($s2 + 2$7s + 1).

If OT is used as the abscissa for the general Bode diagram, it is clear that 5 will be
a parameter. That is, there is a different curve for each value of 5.  These curves
appear as in Fig. 16.6.

The calculation of phase angle as a function of o from Eq.  (16.13) requires
careful attention. The calculation can be done most clearly with the aid of a plot
of tan-lx  (or arctan  x) as shown in Fig. 16.7. As or goes from zero to unity, we
see from EQ. (16.13) that the argument of the arctan  function goes from 0 to --CQ
and the phase angle goes from 0” to -90” as shown by the branch from A to B
in Fig. 16.7. As WT crosses unity from a value less than unity to a value greater
than unity, the sign of the argument of the arctan  function in Eq.  (16.13) shifts
from negative to positive. To preserve continuity in angle as or crosses unity, the
phase angle must go from -90” to - 180” as OT goes from unity to +a  and the
branch of the arctan  function goes from C to D (in Fig. 16.7).

The arctan  function available in calculators and digital computers normally
covers the principal branches of the arctan  function, shown as BAE in Fig. 16.7.
For this reason, one must be very careful in calculating the phase angle with
Eq.  (16.13). If a calculator programmed for the principal branches of the arctan
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__-----

---w--
-270" FIGURE 16-7

Use of plot of tan-lx  for com-
puting phase angle of second-order
system.

function is used and the argument is positive, one obtains the correct phase angle
by subtracting 180” from the answer given by the calculator. Notice that for
WT = 1, the phase angle is -!JO”, independently of 3.  This verifies that all phase
curves intersect at -90” as shown in Fig. 16.6.

We may now examine the amplitude curves obtained from Eq. (16.13). For
WT C 1, the AR, or gain, approaches unity. For OT > 1, the AR becomes
asymptotic to the line

1
AR = (OT)2

This asymptote has slope -2 and intersects the line AR = 1 at or = 1. The
asymptotic lines are indicated on Fig. 16.6. For 5 2 1, we have shown that the
second-order system is equivalent to two first-order systems in series. The fact
that the AR for c L 1 (as well as for &’  < 1) attains a slope of -2 and phase of
- 180 is, therefore, consistent.

Figure 16.6 also shows that, for 5 < 0.707, the AR curves attain maxima
in the vicinity of WT = 1. This can be checked by differentiating the expression
for the AR with respect to or and setting the derivative to zero. The result is

(UT) mM = Jl 352 l c 0.707 (16.24)

for the value of or at which the maximum AR occurs. The value of the maximum
AR, obtained by substituting (~7)~~~  into Eq. (16.13) is

(AR),,  = ’
x&-F

6 < 0.707
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Maximum A.  R.

FIGURE  16-8
Maximum AR
system.

versus damping for second-order

A plot of the maximum AR against f is given in Fig. 16.8. The frequency at which
the maximum AR is attained is called the resonant frequency and is obtained from
Eq. (16.24),

The phenomenon of resonance is frequently observed in our everyday experience.
A vase may vibrate when the stereo is playing a particular note. As a car decel-
erates, perceptible vibrations may occur at particular speeds. A suspension bridge
oscillates violently when scouts march across stepping at a certain cadence.

It may be seen that AR values exceeding unity are attained by systems for
which 5 < 0.707. This is in sharp contrast to the first-order system, for which
the AR is always less than unity.

The curves of Fig. 16.6 for l < 1 am not simple to construct, particularly in
the vicinity of the resonant frequency. Fortunately, almost all second-order control
system components for which we shall want to construct Bode diagrams have
5 > 1. That is, they are composed of two first-order systems in series. Actually,
the curves of Fig. 16.6 are presented primarily because they are useful in analyzing
the closed-loop frequency response of many control systems.

lkansportation  Lag

As shown by Eq. (16.13, the frequency response for G(s) = e-”  is

AR=1

c$  = -or radians or C#I  = -57.2958 or degrees

In this expression, o is in radians and 57.2958 is the number of degrees in one
radian. There is no need to plot the AR since it is constant at 1 .O. On logarithmic
coordinates, the phase angle appears as in Fig. 16.9, where WT is used as the
abscissa to make the figure general. The transportation lag contributes a phase
lag, which increases without bound as w increases. Note that it is necessary to
convert or from radians to degrees to prepare Fig. 16.9.
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zzIlzmu
0 . 1 0 . 2 0.5 1 2 5 1 0

~ul; frequency w
FIGURE 16-9
Phase characteristic of transportation lag.

Propmtlonal  Controller

A proportional controller with transfer function K, has amplitude ratio K, and
phase angle zero at all frequencies. No Bode diagram is necessary for this com-
ponent .

Proportional-Integral Controller

This component has the ideal transfer function

G(s) = K,  1 + $
i 1

Accordingly, the frequency response is given by

AR = IG<jo>l = K,  1 +
1 &I =KcJ+&

Phase=4G(jo)=4(l+~)=tan-‘(-~)

The Bode plot of Fig. 16.10 uses (~1)  as the abscissa. The constant fac-
tor K,  is included in the ordinate for convenience. Asymptotes with a corner

1 0 0

g lo

1 ‘A

s4”

E 1
\\

0 . 1

.Ol 0.1 1 10 100 FIGURE 16-10
=G- Bode diagram for PI controller.
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frequency of 0,  = l/r1 are indicated. The verification of Fig. 16.10 is recom-
mended as an exercise for the reader.

Proportional-Derivative Controller
The transfer function is

G(s) = K,(l  + T~S)

The reader should show that this has amplitude and phase behavior that is just the
inverse of the first-order system

1
7s + 1

Hence, the Bode plot is as shown in Fig. 16.11. The corner frequency is W, =
l/To.

This system is important because it introduces phase lead. Thus, it can be
seen that using PD control for the tank temperature-control system of Example
16.3 would decrease the phase lag at all frequencies. In particular, 180” of phase
lag would not occur until a higher frequency. This may exert a stabilizing influence
on the control system. In the next chapter, we shall look in detail at designing
stabilizing controllers using Bode diagram analysis. It is appropriate to conclude
this chapter with a summarizing example.

Example 16.5. Plot the Bode diagram for the open-loop transfer function of the
control system of Fig. 16.12. This system might represent PD control of three tanks
in series, with a transportation lag in the measuring element.

The open-loop transfer function is

lO(0.5~  + l)e-s’lo
G(s) = (s + 1)2(0.1s + 1)

qi+

.Ol 0.1 1 1 0 1 0 0 FIGURE 16-11
wr,  -F Bode diagram for PD controller.
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Kc=10
B ?iD= vi

e-+r

FIGURE 16-12
Block  diagram of control system for Example 16.5.

The individual components am  plotted as dashed lines in Fig. 16.13. Only the as-
ymptotes are used on the AR portion of the graph. Here it is easiest to plot the factor
(s + 1)-2  as a line of slope -2 through the comer frequency of 1. For the phase-
angle graph, the factor (s + l)-’ is plotted and added in twice to form the overall
curve. The overall curves am  obtained by the graphical rules previously presented.
For comparison, the overall curves obtained without derivative action [i.e., by not
adding in the curves corresponding to (0.5s + l)] am  also shown. It should be noted,
that, on the asymptotic AR diagram, the slopes of the individual curves are added to
obtain the slope of the overall curve.

\.c

0.05 0.1 0.5 1 5 10 50

FIGURE 16-13
Bode  diagram for Example 16.5: (a) amplitude ratio; (b) phase angle.
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9 0

4 5

-180.

-225.

-270.

FIGURE  16-13 (Continued)
Bode diagram for Example 16.5: (a) amplitude ratio; (b) phase angle.

PROBLEMS
16.1. For each of the following transfer functions, sketch the gain versus frequency,

asymptotic Bode diagram. For each case, find the actual gain and phase angle at
o  = 10. Nore:  It is not necessary to use log-log paper; simply rule off decades
on rectangular paper.

@)  (10s +l& + 1)

@)  (s +  l,(K +  1)2

(c)  (0.1s ,“l$lOS  + 1)

cd1  (0.1s +&los  + 1)
(e) (10s + 1)2

cf) (10 + sj2

16.2. A temperature bath in which the temperature varies sinusoidally at various frequen-
cies is used to measure the frequency response of a temperature-measuring element
B. The apparatus is shown in Fig. P16.2. A standard thermocouple A, for which
the time constant is 0.1 min for the arrangement shown in the sketch, is placed
near the element to be measured. The response of each temperature-measuring ele-
ment is recorded simultaneously on a two-channel recorder. The phase lag between



INTRODUCTION TO FREQUENCY RESPONSE 2 2 1

FIGURE P16-2

the two chart records at different frequencies is shown in the table. From these
data, show that it is reasonable to consider element B as a first-order process and
calculate the time constant. Describe your method clearly.

Fkequency,
cy&&nin

Phase lag of
B behind  A,

deg

0.1 7.1
0.2 12.9
0.4 _ 21.8
0.8 28.2

1.0 29.8
1.5 26 .0
2.0 23.6
3.0 18.0
4.0 14.2

16.3. Plot the asymptotic Bode diagram for the PID controller:

where K,  = 10,rr  = 1, rD = 100. Label comer frequencies and give slopes of
asymptotes.

16.4. One way of experimentally measuring frequency response is to plot the output sine
wave versus the input sine wave. The results of such a plot look like the figure
shown in Fig. P16.4. This is the sinusoidal deviation in output versus sinusoidal
deviation in input and appears as an ellipse centered at the origin. Show how to
obtain the AR and phase lag from this plot.

output

FIGURE P16-4
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16.5. For the transfer function shown below, sketch carefully the gain versus frequen-
cy portion of the asymptotic plot of the Bode diagram. Determine the actual
(exact) value of gain and phase angle at w = 1. Determine the phase angle as
w  + m.

G(s) =
2(0.1s  + 1)
s2(1Os  + 1)

Indicate very clearly the slopes of the asymptotic bode diagram of G(s).
16.6. (a) Plot accurately and neatly the Bode diagram for the process shown in Fig.

P16.6 using log-log paper for gain vs. frequency and semi-log paper for phase
vs. frequency. Plot the frequency as rad/min.

(b) Find the amplitude ratio and phase angle for Y/X  at w  = 1 rad/min  and w  = 4
rad/min.

1 7- -2s + 1 5s + 1 Y
FIGURE P16-6

16.7. For the system shown in Fig. P16.7, determine accurately the phase angle in
degrees between Y(t) and X(t) for w = 0.5. Determine the lag between the input
wave and the output wave.

16.8. (a) For the transfer function given below, sketch carefully the  asymptotic approx-
imation of gain vs. frequency. Show detail such as slopes of asymptotes.

G@)  = (1
s

(b) Find the actual (exact) value of gain and phase angle for o = 1 and for
w = 2.

16.9. Derive expressions for amplitude ratio and phase angle as functions of o  for the
transfer function G(s) = l/(s*  - 1).

16.10. The data given in the following table represent experimental, frequency response
data for a process consisting of a first-order process and a transportation lag.
Determine the time constant and the transportation lag parameter. Write the transfer
function for the process, giving numerical values of the parameters.
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Requency,  cpm Gain Phase angle, deg

0.01 1.0 0.0
0 . 0 2 1.0 - 2 . 0
0 . 0 4 1.0 -6 .0
0 . 0 6 1.0 - 7 . 0
0 . 0 8 1.0 -8 .5

0 . 1 0 1.0 -11 .0
0.15 1.0 - 17.0
0 . 2 0 1.0 -23 .0
0 . 3 0 1.0 - 36.0
0 . 4 0 0.98 -48 .0

0 . 6 0 0 . 9 4 -73 .0
0 . 8 0 0 . 8 8 -96 .0
1.00 0 . 8 3 - 122.0
1.50 0.71 - 180.0
2.00 0.61 - 239.0

4.00 0 . 3 7
6.00 0 . 2 6
8.00 0 . 2 0

10.00 0 . 1 6
20.00 0.080
40.00 0.041

-
-
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The purpose of this chapter is twofold. First, it will be indicated that the stability
of a control system can usually be determined from the Bode diagram of its open-
loop transfer function. Then methods will be presented for rational selection of
controller parameters based on this Bode diagram. The material to be presented
here is one of the more useful design aspects of the subject of frequency response.

Tank-Temperature Control System
It was indicated in the discussion following Example 16.3 that the control system
of Fig. 17.1 might offer stability problems because of excessive phase lag. To
review, this system represents proportional control of tank temperature with a
delay in the feedback loop. The factor & is the process sensitivity ~/WC,  which
gives the ultimate change in tank temperature per unit change in heat input Q.
The proportional sensitivity K,, in Btu per hour per degree of temperature error,
is to be specified by the designer.

The open-loop transfer function for this system is

G(s) =
(K,/600)e-0~0396S

0.202s + 1
(17.1)

2 2 4
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B - T ;

I

-QO386#e
I heater of Example 16.3.

FIGURE 17-1
Control system for stirred-tank

The Bode diagram for G(s) is plotted in Fig. 17.2. As usual, the constant factor
K,/600 is included in the definition of the ordinate for AR. At the frequency  of
43 rad/min,  the phase lag is exactly 180’  and

AR
- = 0.12
K,/600

-90

g

8-135

d
c

-180

-225

-270 1 2 5 1 0 2 0 5 0 loo
w-

FIGURE 17-2
Bode diagram for open-loop trans-
fer function of control system for
stirred-tank heater: (KJwC)~-‘~~
[l/(qs + l)].  (Block diagram
shown in Fig. 17.1.)
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Therefore, if a proportional gain of 5000 Btu/(hr)(“F)  is used,

5ooo
AR = 0.12600  =  1

This is the AR between the signals E and B. Note that it is dimensionless as it
must be, since E and B both have the units of temperature.

The control system is redrawn for K, = 5000 in Fig. 17.3~2,  with the loop
opened. That is, the feedback signal B is disconnected from the comparator. It is
imagined that a set point disturbance

R = sin 43t

is applied to the opened loop. Then, since the open-loop AR and phase lag am
unity and 180’

B = sin(43t  - 180’)  = - sin43t

Now imagine that, at some instant of time, R is set to zero and simultaneously the
loop is closed. Figure 17.3b  indicates that the closed loop continues to oscillate
indefinitely. This oscillation is theoretically sustained even though both R and U
are zero.

Now suppose K, is set to slightly higher value and the same experiment
repeated. This time, the signal E is amplified slightly each time it passes around
the loop. Thus, if K, is set to 5001, after the first time around the loop the signal
E becomes (5001/5000)  sin 43t. After the second time, it is (5001/5000)2sin43t,
etc. The phase-angle relations are not affected by changing K,. We thus conclude

(4

B--sin 4 3 t
- 0.0396s

e

Before
closing loop

(b)

After
closing loop

FIGURE  17-3
Sustained closed-loop oscillation.
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that, for K, > 5000, the response is unbounded, since it oscillates with increasing
amplitude.

Using the definition of stability presented in Chap. 14, it is concluded that
the control system is unstable for K, > 5000 because it exhibits an unbounded
response to the bounded input described above. (The bounded input is zero in this
case, for U = R = 0.) The condition K, > 5000 corresponds to

AR>1

for the open-loop transfer function, at the frequency 43 tad/mm,  where the open-
loop phase lag is 180’.

This argument is not rigorous. We know the response B only if E remains
consrant  in amplitude because of the definition of frequency response. If, however,
the change in K, is very small, so that E is amplified infinitesimally, then B will
closely approximate the fmquency  response. While this does not prove anything,
it shows that we am  justified in suspecting instability and that closer investigation
is warranted. A rigorous proof of stability requires application of the Nyquist
stability criterion [See Coughanowr and Koppel (1965) or Kuo (1987)],  which
uses the theory of complex variables. For our purposes, it is sufficient to proceed
with heuristic arguments.

The Bode Stability Criterion
It is tempting to generalize the results of the analysis of the tank-temperature
control system to the following rule. A control system is unstable if the open-loop
frequency response exhibits an AR exceeding unity at the frequency for which the
phase lag is 180’.  This frequency is called the crossover frequency. The rule is
called the Bode stability criterion.

Actually, since the discussion of the previous section was based on heuristic
arguments, this rule is not quite general. It applies readily to systems for which
the gain and phase curves decrease continuously with frequency. However, if the
phase curve appears as in Fig. 17.4, the more general Nyquist criterion must
usually be used to determine stability. Other exceptions may occur. Fortunately,
most process control systems can be analyzed with the simple Bode criterion, and
it therefore finds wide application.

8
f -180

f
FIGURE 17-4

Frquency  -
Phase behavior of complex system for which Bode
criterion is not applicable.
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FIGURE 17-5
Block diagram for general control system.

Application of the criterion requires nothing more than plotting the open-
loop frequency response. This may be based on the theoretical transfer function,
if it is available, as we have done for the tank-temperature system. If the theo-
retical system dynamics are not known, the frequency response may be obtained
experimentally. To do this, the open-loop system is disturbed with a sine-wave
input at several frequencies. At each frequency, records of the input and output
waves are compared to establish AR and phase lag. The results ate plotted as a
Bode diagram. This experimental technique will be illustrated in more detail in
Chap. 19.

For the remainder of this chapter, we accept the Bode stability criterion as
valid and use it to establish control system design procedure.

Gain and Phase Margins
Let us consider the general problem of selecting G Js)  for the system of Fig. 17.5.
Suppose the open-loop frequency response, when a particular controller G,(s) is
tried, is as shown in the Bode diagram of Fig. 17.6. The crossover frequency,
at which the phase lag is 1 80°, is noted as o,, on the Bode diagram. At this
frequency, the AR is A. If A exceeds unity, we know from the Bode criterion that
the system is unstable and that we have made a poor selection of G,(S).  In Fig.
17.6 it is assumed that A is less than unity and therefore the system is stable.

It is necessary to ascertain to what degree the system is stable. Intuitively,
if A is only slightly less than unity the system is “almost unstable” and may be
expected to behave in a highly oscillatory manner even though it is theoretically
stable? Furthermore, the constant A is determined by physical parameters of the
system, such as time constants. These can be only estimated and may actually
change slowly with time because of wear or corrosion. Hence, a design for which
A is close to unity does not have an adequate safety factor.

To assign some quantitative measure to these considerations, the concept of
gain margin is introduced. Using the nomenclature of Fig. 17.6,

Gain margin = i

* Again, heuristic arguments are used. This statement is self-evident to the reader who has studied
Chap. 15, where it is shown that the roots of the characteristic equation vary continuously WI&~
system parameters. Proof of the statement requires the Nyquist stability criterion.
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Open-loop Bode diagram for typical control system.

ljrpical  specifications for design are that the gain margin  should be greater than
1.7. This means that the AR at crossover could increase by a factor of 1.7 over
the design value befom  the system became unstable. The design value of the gain
margin is really a safety factor. As such, its value varies considerably with the
application and designer. A gain margin of unity or less indicates an unstable
system.

Another margin frequently used for design is the phase margin. As indicated
in Fig. 17.6, it is the difference between 180’ and the phase lag at the frequency
for which the gain is unity. The phase margin therefore represents the additional
amount of phase lag required to destabilize the system, just as the gain margin
represents the additional gain for destabilization. Typical design specijications  are
that the phase margin must be greater than 30’.  A negative phase margin indicates
an unstable system.

Example 17.1. Find a relation between relative stability and the phase margin for
the control system of Fig. 17.7. A proportional controller is to be used.

This block diagram corresponds to the stirred-tank heater system, for which
the block diagmm  has been given in Fig. 13.6. The particular set of constants is

1T=7m=l  -cl
W C

FlGURE  17-7
Block diagram for Example 17.1.
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These am to be regarded as fixed, while the proportional gain KC  is to be varied to
give satisfactory phase margin. The closed-loop transfer function for this system is
given by Eq.  (13.17),  rewritten for our particular case as

C Kc s+l-=-
R l+K c +s*  + 27252s  + 1

(17.2)

J 1
where? = -1 +Kc

Since the closed-loop system is second-order, it can never be unstable. The shape  of
the response of the closed-loop system to a unit step in R must resemble the curves
of Fig. 8.2. The meaning of relative stability is illustrated by Fig. 8.2. The lower
fi is made, the mom oscillatory and hence the “less stable” will be the response.
Therefore, a relationship between phase margin and 62 will give the relation between
phase margin and relative stability.

To find this relation the open-loop Bode diagram is prepared and is shown in
Fig. 17.8. The simplest way to proceed from this diagram is as follows: consider a
typical frequency w = 4. If the open-loop gain were 1 at this frequency, then since
the phase angle is -152’,  the phase margin would be 28’.  To make the open-loop
gain 1 ,at  0  = 4, it is required that

&CL=
0.062

16.1

Then

{*=  1
J1 +Kc

= 0.24

Hence, a point on the curve of 52  versus phase margin is

l2 = 0.24 phase margin = 28’

w- i
I
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Other points are calculated similarly at different frequencies, and the resulting curve
is shown in Fig. 17.9. From this figure it is seen that 52 decreases with decreasing
phase margin and that, if the phase margin is less than 30°, 52 is less than 0.26.
From Fig. 8.2, it can be seen that the response of this system for 45 < 0.26 is highly
oscillatory, hence relatively unstable, compared with a response for the system with
phase margin 50’ and 52 = 0.4.

For the particular system of Example 17.1, it was shown that the response
became more oscillatory as the phase margin was decreased. This result general-
izes to mom complex systems. Thus, the phase margin is a useful design tool for
application to systems of higher complexity, where the transient response cannot
be easily determined and a plot such as Fig. 17.9 cannot be made. To repeat, the
rule of thumb is that the phase margin must be greater than 30’.

A similar statement can be made about the gain margin. As the gain margin
is increased, the system response generally becomes less oscillatory, hence more
stable. A control system designer will often try to make both the gain and phase
margins equal to or greater than specified minimum values, typically 1.7 and 30’.
Note that, for the case-of Example 17.1, the gain margin is always infinite because
the phase lag never quite reaches 180”. However, the phase margin requirement of
30’ necessitates that fi  > 0.26, hence K, < 14, which means that an offset of 8
[see Eq. (17.2)]  must be accepted. This illustrates the importance of considering
both margins. The reader should refer to Fig. 17.6 to see that both margins exist
simultaneously.

Example 17.2. Specify the proportional gain Kc for the control system of Fig.
16.12. The Bode diagram for the particular case K, = 10 is presented in Fig.
16.13. The gain is to be specified for the two cases:

1. 70  = 0.5 min
2. 70 = 0 (no derivative action)

1 . Consider first the gain margin. The crossover frequency for the curve with deriva-
tive action is 8.0 rad/min.  At this frequency, the open-loop gain is 0.062 if the
value of K, is unity. (Including the factor of l/l0  in the ordinate is actually

0 .6

Phase margin

FIGURE 17-9
Damping versus phase margin for system of Fig.
17.7.
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equivalent to plotting the case K,  = 1.) Therefore, according to the Bode cri-
terion, the value of K,  necessary to destabilize the loop is l/O.062 or 16. To
achieve a gain margin of 1.7, K,  must be taken as 1611.7 or 9.4. To achieve
proper phase margin, note that the frequency for which the phase lag is 150’
(phase margin is 30’) is 5.3 rad/min.  At this frequency, a value for K,  of l/O.094
or 10.6 will cause the open-loop gain to be unity. Since this is higher than 9.4,
we use 9.4 as the design value of K,. The resulting phase margin is then 38O.

2. Proceeding exactly as in case 1 but using the curve in Fig. 16.13 for no derivative
action, it is found that K,  = 5.3 is needed for satisfactory gain margin and
K, = 3.7 for satisfactory phase margin. Hence K,  is taken as 3.7 and the
resulting gain margin is 2.4.

To see the advantage of adding derivative control in this case, note from
Fig. 16.12 that the final value of C for a unit-step change in U is l/(l + Kc)
for any value of 7~.  The addition of the derivative action allows increase of the
value of K, from 3.7 to 9.4 while maintaining approximately the same relative
stability in terms of gain and phase margins. This reduces the offset from 21
percent of the change in U to 9.6 percent of the change in U.

The reader is cautioned that the values of K,  selected in this way should
be regarded as initial approximations to the actual values,.which  give “optimal”
control of the system of Fig. 16.12. More will be said about this matter later in
this chapter in conjunction with the two-tank chemical-reactor control system of
Chap. 11.

Thus far, nothing has been said about upper limits on the gain and phase
margins. Referring to Example 17.1 and Fig. 8.2, it is seen that, if (2 is too
large, the response is sluggish. In fact, Fig. 8.2 suggests that for the system
of Fig. 17.7 one should choose a value of 52 low enough to give a short rise
time without causing excessive response time and overshoot. In other words, one
wants the most rapid response that has sufficient relative stability. The results
of Example 17.1 generalize to many systems of higher complexity, in terms of
margin. Hence, the designer frequently chooses the controller so that either the
gain or phase margin is equal to its lowest acceptable value and the other margin is
(probably) above its lowest acceptable value. This was the procedure followed in
Example 17.2. In almost every situation, the designer faces this conflict between
speed of response and degree of oscillation. In addition, if integral action is not
used, the amount of the offset must be considered.

The concepts of gain and phase margin are useful in selecting K, for propor-
tional action. However, for additional modes of control such as PD, these concepts
are difficult to apply in practice. Consider the selection of K, and 70 in Example
17.2. For a different value of 70 the derivative contribution is shifted to the right
or left on the Bode diagram’of Fig. 16.13. This means that a different value of K,
will provide the proper margins. A typical design procedure is to select the value
of 70  for which the value of K, resulting in a 30’ phase margin is maximized.
The motivation for this choice is that the offset will be minimized. However,
the procedure is clearly trial and error. In the case of three-mode control, there
are two parameters, ~1  and 70, which must be varied by trial to meet various design
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criteria. Fortunately, for this case and others there are simple rules for directly
establishing values of the control parameters that usually give satisfactory gain
and phase margins. These are the Ziegler-Nichols rules, which we develop in the
next section.

Ziegler-Nichols Controller Settings
Consider selection of a controller G, for the general control system of Fig. 17.5.
We first plot the Bode diagram for the final control element, the process, and
the measuring element in series, GiG2H(ju).  It should be emphasized that the
controller is omitted from this plot. Suppose the diagram appears as in Fig. 17.6.
As noted on the figure, the crossover frequency for these three components in. .senes is o,,. At the crossover frequency, the overall gain is A, as indicated.
According to the Bode criterion, then, the gain of a proportional controller which
would cause the system of Fig. 17.5 to be on the verge of instability is l/A. We
define this quantity to be the ultimate gain K,. Thus

K, = A' (17.3)

The ultimate period P,  is defined as the period of the sustained cycling that would
occur if a proportional controller with gain K, were used. From the discussion of
Fig. 17.3, we know this to be

p, = E time/cycle (17.3a)
WC0

The factor of 2~ appears, so that P,  will be in units of time per cycle rather than
time per radian. It should be emphasized that K, and P, are easily determined
from the Bode diagram of Fig. 17.6.

The Ziegler-Nichols settings for controllers are determined directly from K,
and P, according to the rules summarized in Table 17.1. Unfortunately, speci-
fications of K, and ro for PD control cannot be made using only K, and P,.
In general, the values 0.6K,  and PUB, which correspond to the limiting case of
no integral action in a three-mode controller, are too conservative. That is, the

TABLE 17.1
Ziegler-Nichols Controller Settings

ljpe  of control G,(s) KC 71 7D

Proportional

Proportional-integral (PI)

KC OJK,

0.45K,, p,,
i?

Proportional-integral-derivative (PID)
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resulting system will be too stable. There exist methods for this case which am  in
principle no more difficult to use than the Ziegler-Nichols rules. One of these is
selection of ~0  for maximum K, at 30’  phase margi ‘, which was discussed above.
Another method, which utilizes the step responseLd avoids trial and error, is
presented in Chap. 19.

The reasoning behind the Ziegler-Nichols selection of values of K, is rela-
tively clear. In the case of proportional control only, a gain margin of 2 is estab-
lished. The addition of integral action introduces more phase lag at all frequencies
(see Fig. 16.10); hence a lower value of Kc is required to maintain roughly the
same gain margin. Adding derivative action introduces phase lead. Hence, more
gain may be tolerated. This was demonstrated in Example 17.2. However, by and
large the Ziegler-Nichols settings am  based on experience with typical processes
and should be regarded as first estimates.

Example 17.3. Using the Ziegler-Nichols rules, determine K, and ~1 for the control
system shown in Fig. 17.10.

For this problem, the computation will be done without plotting a Bode di-
agram; however, the reader may wish to do the problem with such a diagram. We
first obtain the crossover frequency by applying the Bode stability criterion:

-180’ = - tan-‘(o) - 57.3(1.0;)(0)

The value 57.3 converts radians to degrees. Solving this equation by trial and error
gives for the crossover frequency, wCO  = 2 rad/min.  The amplitude ratio (AR) at
the crossover frequency for the open loop can be written

A R =  K c -

where we have used Eq. (16.16) for the first-order system and the fact that the
amplitude ratio for a transport lag is one. According to the Bode criterion, the AR
is 1.0 at the crossover frequency when the system is on the verge of instability.
Inserting AR = 1 into the above equation and solving for K, gives K,, = 2.24.
From the Ziegler-Nichols rules of Table 17.1, we obtain

and

K, = 0.45K,, = (0.45)(2.24) = 1.01

71 = PJ1.2  = [21rlw,,]/1.2  = [21r/2]/1.2  = 2.62 min.

b? :
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FIGURE 17-11
Block diagram for two-tank chemical-
reactor system.

Example 17.4. Using the Ziegler-Nichols rules, determine controller settings for
various modes of control of the two-tank chemical-reactor system of Chap. 11. The
block diagram is reproduced in Fig. 17.11.

For convenience, the process gain K and the controller gain K,  are combined
into an overall gain K1.  The equivalent controller transfer function is regarded as

where K1  (as well as 71  and 7~)  is to be selected by the Ziegler-Nichols rules. The
requited  value of KC  is then easily determined as

where K = 0.09 for the present case (see Chap. 11.)
The Bode diagram for the transfer function without the controller

e-‘(ln)s

(s + 1)(2s  + 1)

is prepared by the usual pmcedums  and is shown in Fig. 17.12. From this figure, it
is found that

0co = 1.56 rad/min

KLd
1= - = 6 .9

0.145 (17.4)

Pu = f& = 4.0 mm/cycle

Hence, the Ziegler-Nichols control constants determined from Table 17.1 and Eq.
(17.4) are given in Table 17.2.

A plot comparing the open-loop frequency responses including the controller
for the three cases, using the controller constants of Table 17.2, is given in Fig.
17.13. This figure shows quite clearly the effect of the phase lead due to the deriva-
tive action. The resulting gain and phase margins am  listed in Table 17.3. From this
table it may be seen that the margins are adequate and generally conservative.
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FIGURE 17-12
Bode diagram for
e-“.5J/[(s  + 1)(2s + I)].

Note that to obtain the Bode diagram for systems including the PID  controller,
the controller transfer function is rewritten as

(17.5)

This is second-order in the numerator and has integral action in the denominator.
In general, the numerator factors into first-order factors; hence it contributes two

TABLE  17.2

Control 4 71 ?v

P 3.5
P I 3.1 3.3
P I D 4.2 2.0 0.50
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FIGURE  17-13
Open-loop Bode diigrams  for vari-

55 IO’ ow  cc41troIters  wifb  system of Fig.
17.11.

FIGURE  17-13
Open-loop Bode diigrams  for vari-
ous cc41troIters  wifb  system of Fig.
17.11.

0

curves simii to that of Fig. 16. I1 to the overaIl  diagram. Far  the Ziegler-Nicholscurves simii to that of Fig. 16. I1 to the overaIl  diagram. Far  the Ziegler-Nichols
settings it is seen from  TabIe  17.1  that rf = 4~.  Making  this substitution into Eq.settings it is seen from  TabIe  17.1  that rf = 4~.  Making  this substitution into Eq.
(17.5)(17.5)

(17.6)

shows that the numerator is equivalent to two PD components in series. This AR
is repreSented  by a high-frequency asymptote of slope +2  passing through the fre-

TxlsLE  17.3

COIltlVl Gpinmargin ==msrgia

P 2.0 450
Pl 1 .9 33”
PID 2 .6 34”



238  FREQUENCY  RJ?.SPONSE

quency  o  = 1%~  and a low-frequency asymptote on the line AR  = 1. It should
be emphasized that these special considerations apply only to the Ziegler-Nichols
settings. In the general case, the two times constants obtained by factoring the numer-
ator of Fq. (17.5) will be different. The Bode plot of the denominator follows’from

The gain is  a straight line of slope - 1 passing through the point (AR = 1,  w =
l/~f). The phase lag is 90’ at all frequencies. Plotting of ihe overall Bode diagram
for the PID case to check the results of Fig. 17.13 is recommended as an exercise
for the reader.

lhnsient  Responses
For instructive purposes, the two-tank reactor system of Fig. 17.11 was simulated
on a computer. Responses of C(t) to a unit-step change in R(t) am  shown in
Fig. 17.14. These responses were obtained using the Ziegler-Nichols controller
settings determined in Example 17.4.

The responses to a step load change were also obtained on a computer. These
am  the curves of Fig. 10.7 that were discussed in Chap. 10 to illustrate the function
of the various modes of control. A load change for this system corresponds to
a change in the inlet concentration of reactant to tank 1 (refer to Fig. 11.1).
As process control engineers, we would be more interested in controlling against
this kind of disturbance than against a set-point change because the set point or
desired product concentration is likely to remain relatively fixed. In other words,
this is a regulator problem and the curves of Fig. 10.7 am  those we would use to
determine the quality of control.

However, the step change in set point is frequently used to test control sys-
tems despite the fact that the system will be primarily subject to load changes
during actual operation. The reason for this is the existence of well-established
terminology used to describe the step response of the underdamped second-order
system. This terminology, which was presented in Chap. 8, is used to assign
quantitative measure to responses that am not truly second-order, such as those

0 2 4 6 8 10 1 2 1 ’ 4 1 6
Time-

FIGURJI  17-14
Closed-loop response to step change in R(t) for control system of Fig. 17.11, using various control
modes (obtained by computer).
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of Fig. 17.14. Of course, the terminology can be applied only to responses that
resemble damped sinusoids. Values of the various parameters determined for the
responses of Fig 17.14 am summarized in Table 17.4. Offset, realized only with
proportional control, is included for completeness.

It can be seen from  Fig. 17.14 and Table 17.4 that addition of integral action
eliminates offset at the expense of a more oscillatory response. When derivative
action is also included, the response is much faster (lower rise time) and much less
oscillatory (lower response time). The large overshoots realized in all three cases
are characteristic of systems with relatively large time delays. In this case the
controller is receiving information about the concentration in the second reactor
that was true 1 min ago. This is to be compared with the reactor time constants
of 1 and 2 min. Hence, it is not surprising that the system overshoots before the
controller can take sufficient action.

Figure 17.15 is presented for two purposes: (1) to illustrate that the Ziegler-
Nichols controller settings should be regarded as first guesses rather than fixed
values and (2) to show the effects of changing the various controller settings.
These figures, which were obtained on a computer, am transient responses to step
changes in set point for the three-mode PID control. They show the effects of
individually varying the three control parameters Kc,  ~1,  and ~0.

As an example of the use of these figures, suppose that it is decided that the
maximum overshoot that can be tolerated is 25 percent. Figure 17.15a  shows that
overshoot may be reduced by decreasing K,  at the expense of a considerably mom
sluggish response. From Fig. 17.15b,  we see that overshoot may be reduced by
increasing ~1  (decreasing integral action) at a lesser expense in speed of response.
Thus, for ~1  = 5 min, the overshoot is reduced to 20 percent without a serious
sacrifice in speed. The overshoot cannot be significantly reduced by changing
Q , as can be seen from Fig. 17.15~.  However, the speed of response may be
significantly increased by increasing the derivative action, at the expense of mom
oscillation before the response has settled (higher decay ratio, lower period). From
this brief study of these figures, it may be concluded that, to decrease overshoot
without seriously slowing the response, a combination of changes should be made.
A possible combination, which should be tried, is to reduce K, slightly and to
increase TI and TO moderately. These changes would probably be tried on the
actual reactor system when it is put into operation. Such adjustments from the
preliminary settings are usually made by experienced control engineers, using trial
procedures that are more art than science. For this reason, we leave the problem
of adjustment at this point.

TABLE 17.4

R?rlod  of
oscillation,

Control Overshoot InhI offset

P 0 .49 0.26 1.3 10.4 5.0 0.21
P I 0 .46 0.29 1.5 11.8 5.5 0
PID 0.42 0.05 0.9 4.9 5.0 0



PIGURE  17-15
Effeas  of varying controller settings on system response. (2.4  indicates response usmg  Llr;l;=r-
Nichols settings.)

PROBLEMS
17.1. Calculate the value of gain K,  needed to produce continuous oscillations in the

control system shown in Fig. P17.1 when
(a)  n  is 2.
(b)  n i s 3 .
Do nor  use a graph for this calculation.

FIGURE  P17-1

17.2. (a)  Plot the asymptotic Bode diagram IBk  1 versus o  for the COMOI  SYS@II shown
in Fig. Pl7.2.
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FIGURE P17-2

(b) The gain K,  is increased until the system oscillates continuously at a frequency
of 3 tad/mm. From this information, calculate the transportation lag parameter
rd.

17.3. The frequency response  for the block G, in Fig. P17.3 is given in the following
table:

GdIl

0 . 0 6 1350
0.08 1.40
0 . 1 0 1.m
0 . 1 5 0 . 8 4
0 . 2 0 0.61
0 . 3 0 0.35
0 . 4 0 0.22
0 . 6 0 0.11
0 . 8 0 0.066

-68
-88

- 105
- 145
-177
-235

Gp contains a distance velocity lag eSTs  with T = 1 (this transfer function is
included in the data given in the table).
(a) Find the value of Kc  needed to produce a phase margin of 30’  for the system

if 71 = 0.2.
(b)  Using the value of K,  found in part (a) and using q = 0.2, find the percentage

change in the parameter T to cause the system to oscillate continuously with
constant amplitude.

I I FIGURE  P173

17.4. The system shown in Fig. P17.4 is controlled by a proportional contmlier.  The
concentration of salt in the solution leaving the tank is controlled by adding a
concentrated solution through a control valve. The following data apply:

1. Concentration of concentrated salt solution Cl  = 25 lb salt/ft3  solution.
2. Controlled concentration C = 0.1 lb salt/ft3  solution.
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J
FIGURE P17-4

3. Transducer: The pen on the controller moves full scale when the concentration
varies from 0.08 to 0.12 lb/ft3.  This relationship is linear The pen moves 4.25
inches during full-scale travel.

4. Control valve: The flow through the control valve varies from 0.002 to 0.0006
cfm with a change of valve-top pressure from 3 to 15 psi. This relationship is
linear.

5. Distance velocity lag: It takes 1 min for the solution leaving the tank to reach
the concentration-measuring element at the end of the pipe.

6. Neglect lags in the valve and transducer.
(a)  Draw a block diagram of the control system. Place in each block the ap-

propriate transfer function. Calculate all the constants and give the units.
(b)  Using a frequency-response diagram and the Ziegler-Nichols rules, deter-

mine the settings of the controller.
(c) Using the controller settings of part (b) calculate the offset when the set

point is changed by 0.02 unit of concentration.

17.5. The stirred-tank heater system shown in Fig. P17.5 is contmlled  by a PI controller.
The following data apply:

W,  flow rate of liquid through the tanks: 250 lb/mm
Holdup volume of each tank:  10 ft3
Density of liquid: 50 lb/ft3
Transducer: A change of 1°F  causes the controller pen to move 0.25
inch.
Final control element: A change of 1 psi from the controller changes
the heat input q by 400 Btu/min.  The final control element is linear. q

FlGURE  P17-5
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(a) Draw a block diagram of the control system. Show in detail such things as
units and numerical values of the parameters.

(b)  Determine the controller settings by the Ziegler-Nichols rules.
(c) If the control system is operated with proportional mode onfy,  using the value

of K,  found in part (b), determine the flow rate w at which the system will be
on the verge of instability and oscillate continuously. What is the frequency
of this oscillation?

17.6. The transfer function of a process and measurement element connected in series is
given by

e -0.4

(4

(6)
17.7. (a)

04

(4

(4

(2s + 1)2

Sketch the open-loop Bode diagram (gain and phase) for a control system
involving this process and measurement lag.
Specify the gain of a proportional controller to be used in this control system.
For the control system shown in Fig. P17.7, determine the transfer function
c/u.
For  K,  = 2 and 70 = 1, find C(l.25) and the offset if U(t) = u(t), a
unit-step.
Sketch the open-loop Bode diagram for K,  = 2 and rD  = 1. For the upper part
of the diagram (AR versus o),  show the asymptotic approximation. Include
in the open-loop Bode diagram the transfer function for the controller.
From the Bode diagram, what do you conclude about stability of the closed-
loop system?

17.8. The proportional controller of the temperature-control system shown in Fig. P17.8
is properly tuned to give a good transient response for a standard set of operating

Contro l le r

S t e a m

Water

FIGURE P17-8
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conditions. If changes are made in the operating conditions, the control system
may become more or Iess  stable. If the changes listed below ate made separately,
determine whether the system becomes more stable, less stable, or remains the
same. Try to use the Bode stability criterion and sketches of frequency response
graphs to solve this problem.

1. Controller gain increases.
2. Length of pipe between measuring element and tank increases.
3. Measuring element is inserted in tank.
4 Integral action is provided in controller.
5. A larger valve is used (i.e., one with a higher C,  value).

17.9. For each control system shown in Fig. P17.9, determine the characteristic equation
of the closed-loop response and determine the value of K c that will cause the system
to be on the verge of instability (i.e., find the ultimate gain, K,,). If possible, use
the Routh test. Note that the feedback element for System B is an approximation
to e-2s.

System A:

System 6:
1 1

(8s + 1y  1
+c

FlGURE  P17-9

17.10. (a) For  the system shown in Fig. P17.10 determine the value of K, that will give
30“ of phase margin.

(b) If a PI controller with rl = 2 is used in place of the proportional controller,
determine the value of Kc for 30’ of phase margin.
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Controller

I7

FIGURE P17-11

17.11. A stirred-tank heating process and its block diagram are shown in Fig. P17.11. The
control system is tuned by the Ziegler-Nichols method, and the ultimate frequency,
wu is 2 radlmin.
(a) Determine the value of K,  by the Ziegler-Nichols method of tuning.
(b) What is the length of the pipe between the tank and the measuring element?
(c) What are the gain margin and the phase margin for the control system when

K, is set to the Ziegler-Nichols value  found in part (a).

Data on process:

p,  density of fluid = 62 IbEt
C, heat capacity of fluid = 1.0 Btu/(lb)(‘F)
inside diameter of pipe = 2.0 in.
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CHAPTER

18
ADVANCED
CONTROL

STRATEGIES

Up to this point, the control systems considered have been single-loop systems
involving one controller and one measuring element. In this chapter, several mul-
tiloop systems will be described; these include cascade control, feedforward con-
trol, ratio control, Smith predictor control, and internal model control. The first
three have found wide acceptance in industry. Smith predictor control has been
known for about thirty years, but it was considered impractical until the modem
microprocessor-based controllers provided the simulation of transport lag. Internal
model control, which is new and is based on a rigorous mathematical foundation
and an accurate model of the process, has been the subject of intense research for
the past ten years. The controller hardware and instrumentation for all of these
systems are readily available from manufacturers. Since this chapter is quite long,
the reader may wish to select the type of advanced control strategy that .is of par-
ticular interest. The descriptions of the five strategies are independent and need
not be read in the order presented.

CASCADE CONTROL
To provide motivation for the study of cascade control, consider the single-loop
control of a jacketed kettle as shown in Fig. 18. la. The system consists of a kettle
through which water, entering at temperature Ti, is heated to To  by the flow of hot
oil through a jacket surrounding the kettle. The temperature of the water in the
kettle is measured and transmitted to the controller, which in turn adjusts the flow
of hot oil through the jacket. This control system is satisfactory for controlling
the kettle temperature; however, if the temperature of the oil-supply should drop,
the kettle temperature can undergo a large prolonged excursion from the set point
before control is again established. The reason for this is that the controller does
not take corrective action until the effect of the drop in oil-supply temperature

249
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E water ,
‘i

‘hot o i l

(4

FIGURE 18-1
(b)

(a) Single-loop control of a jacketed kettle (b) cascade control of a jacketed kettle.

has worked itself through the system of several resistances to teach the measuring
element.

To prevent the sluggish response of kettle temperature  to a disturbance in
oil-supply temperature, the control system shown in Fig. 18. lb is proposed. In this
system, which includes two controllers and two measuring elements, the output
of the primary controller is used to adjust the set point of a secondary controller,
which is used to control the jacket temperature. Under these conditions, the pri-
mary controller adjusts indirectly the jacket temperature. If the oil temperature
should drop, the secondary control loop will act quickly to maintain the jacket
temperature close to the value determined by the set point that is adjusted by the
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R To

FIGURE 18-2
(b)

Block diagram: (a) single-loop conventional control (b) cascade control.

primary controller. This system shown in Fig. 18. lb is called a cascade control
system. The primary controller is also referred to as the master controller and the
secondary controller is referred to as the slave controller.

A simplified block diagram of the single-loop system is shown in Fig. 18.20.
Figure 18.2b,  which is a block diagram representation of the cascade control
system, shows clearly that an inner loop has been added to the conventional
control system.

Analysis of Cascade Control
To develop the closed-loop transfer functions for a cascade control system, con-
sider the general block diagram shown in Fig. 18.3. In this diagram, the load
disturbance U enters between two blocks of the plant and the inner loop encloses
this load disturbance.

To determine the transfer function C/R, the inner loop is reduced to one
block by the method shown in Chapter 12. The result is shown in Fig. 18.3b,  and
the block diagram of Fig. 18.3b  can be used to give the result

c-= Gc, GaG3
R 1 + GqGa%Hl

(18.1)

where G,  = G&G2
1+ Gc2G1G2H2
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i

FIGURE  18-3
(b)

Block diagram for cascade control for set-point change.

To obtain the transfer function relating output  to load, C/U, the block di-
agram of Fig. 18.3~  is nxrranged by placing the transfer function G ,G  t in the
feedback paths of the primary and secondary loops; the new arrangement is shown
in Fig. 18.4a.  Since R = 0 for the case under consideration, the block diagram
can be redrawn as shown in Fig. 18.4b.  This diagram, which has the same form
as the one in Fig. 18.3a, can now be reduced to the form shown in Fig. 18.4~.
Application of the rules of Chapter 12 to Fig. 18.4~  finally gives

C G3 GO-=-
u GGc2  1 + GaGc,HlG3

(18.2)

where G,  is the same as given in Eq. (18.1).

Example 18.1. To compare conventional control with  cascade control, consider the
conventional control system of Fig. 18.5~  in which a third-order process is under PI
control. A cascade version of this single-loop control system is shown in Fig. 18%
in which an inner-loop having proportional control encfoses  the load disturbance U.

To obtain a response of the conventional control system for use in compari-
son with the response of the cascade system, the block  diagram of Fig. 18.5~  was
simulated on a computer. The values of K,  and q were chosen by trial and error to
give the response to a step,  change in set point shown as Curve I of Fig. 18.6; this
response, which has a decay ratio of about 4, was obtained with K,  = 2.84 and
~1 = 5. The Ziegler-Nichols settings (Kc  = 3.65 and q = 3.0 ) gave a set-point
response that was too oscillatory. Having obtained satisfactory controller settings
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R = O

FIGURE 18-4
Block diagram for cascade control for load change.

(K, = 2.84 and q  = 5.0) the response of the system to a step change in U of
4 units is shown as Curve II of Fig. 18.7. The load response for no control (i.e.,
K, = 0) is also shown as Curve I for comparison.

The cascade control system of Fig. 18Sb  was also simulated to obtain a load
response. The controller gain K,, of the inner loop was chosen arbitrarily to be
10.0. This value was chosen to be high in order to obtain a fast-responding inner
loop, a desirable situation for cascade control. Because of the introduction of the
inner loop, the dynamics of the control system have changed and it is necessary to
tune the primary controller parameters for a good response to a step change in set
point. By trial and error, primary controller settings of K,, = 1 .O and q = 0.63
were found that produced the response to a unit step in set point, shown as Curve II
in Fig. 18.6. The use of Ziegler-Nichols settings produced a less desirable response.

Using the controller parameters found from the step change in set point
(Kc, = 1.0 , q  = 0.63), the response of the cascade system to a step change
in load of 4 units was obtained and is shown as Curve III of Fig. 18.7. As shown
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(4

FIGURE 18-5
(b)

Block diagrams for Example 18.l:(a) Single-loop conventional control (b) cascade control.

in Fig. 18.7, the  load response for the cascade control system is far superior to the
load response of the conventional control system. The maximum deviation of the
cascade response has been reduced by a factor of about four and the  frequency of
oscillation has nearly doubled.

Cascade control is especially useful in reducing the effect of a load disturbance
that moves through the control system slowly. The inner loop has the effect of
reducing the lag in the outer loop, with the result that the cascade system responds
more quickly with a higher frequency of oscillation. Example 18.2 will illustrate
this effect of cascade control.

I  Convent ional  cont ro l

I I  Cascade contro l

FIGURE 18-6
Responses to step change in set point for
single-loop control and cascade control for
Example 18.1. I Conventional control with
K, = 2.84, r1  = 5; II  Cascade control with

5 10 15 20 1 Kci  = 1.0, r1  = 0.63, KEZ = 10.
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FlGURE  18-7
Responses to step change in load for Example 18.1.
I no control;  II conventional control  with K, =
2.84, TI = 5; III cascade control with K,, =
1.0, rl = 0.63, Kc* = 10.

The choice of control action and tuning of the primary and secondary con-
trollers for a cascade control system must be given careful consideration. The
control action for the inner loop is often proportional with the gain set to a high
value. The rationale for the use of proportional contml  rather than two- or three-
mode control is that tuning is simplified and any offset associated with proportional
control of the inner loop can be handled by the presence of integral action in the
primary controller. The gain of the secondary controller should be set to a high
value to give a tight inner loop that responds quickly to load disturbance; how-
ever, the gain should not be so high that the inner loop is unstable. Although the
primary control loop can provide stable control even when the inner loop is un-
stable, it is considered unwise to have an unstable inner loop because the system
will go unstable if the primary controller is placed in manual operation or if there
is a break in the outer loop.

The action for the primary controller is generally PI or PID.  The integral
action is needed to reduce offset when sustained changes in load or set point
occur. The problem of adjusting a primary controller is essentially the same as
for a single-loop control system. Since the addition of the inner loop can change
the dynamics of the outer loop significantly, the primary controller must be re-
tuned when the inner loop is closed or when the secondary controller settings are
changed.

The microprocessor-based controllers available today can implement cascade
control very easily. A discussion of such controllers will be given in a later
chapter.

Example 18.2. The claim is often made that cascade control gives a better response
than conventional control because the lags in the outer loop are reduced. To illustrate
this benefit, consider the conventional control and the cascade control of a third-order
plant in Figs. 18.8~  and b. The inner loop of the cascade system surrounds two of
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FIGURE 18-8
Block diagram for Example 18.2.

the first-order blocks in the plant. To simplify the discussion, the load disturbance is
not shown since we are interested only in the closed-loop dynamics. The equivalent
single-loop control system of the cascade system, shown in Fig. I8 AC, was obtained
by the usual method for reducing a loop to a single block.

Comparing Fig. 18.8~  with Fig. 18.8~  shows that the use of cascade con-
tro1  has replaced a second-order critically damped system represented by the first
two bIocks  of the plant [I/(s + 1)2]  with the following underdamped second-order
system:

K
T2S2  + 2579  + 1

where  K = lo/11

7=JVii

t=  J i m

This second-order underdamped system, for which T and 5 am  small, responds much
faster than the critically damped second-order transfer function of the  first two blocks
of the open-loop system. Consequently, the cascade system will respond faster with
a higher frequency of oscillation as we have already seen in the simulated response
of Fig. 18.6.
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FEEDFORWARD CONTROL

If a particular load disturbance occurs frequently in a control process, the quality of
control can often be improved by the addition of feedforward control. Consider the
composition control system shown in Fig. 18.9~~  in which a concentrated stream of
control reagent containing water and solute is used to control the concentration of
the stream leaving a three-tank system. The stream to be processed passes through
a preconditioning stirred tank where composition fluctuations are smoothed out
before the outlet stream is mixed with control reagent. A three-tank system has
been chosen for ease of computation in a numerical example that follows.

In the conventional feedback control system shown in Fig. 18.9a,  the mea-
surement of composition in the third tank is sent to a controller, which generates----------rlContrd

reagent Dl4 / p’cont ro l le r

tank 1 tank 2 tank 3

FIGURE 18-9
U4

Composition control system: (a) physical process; (b) block diagram.
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---
FIGURE 18-10
Responses to a step change in set point for PI
control.
Curve 1: Ziegler-Nichols settings: K, = 3.65,

= 3.0.  Curve II: Settings for improved te-
&nse:K: = 284 q = 50. t .  .

a signal that opens or closes the control valve, which in turn supplies concentrated
reagent to the first tank. The block diagram corresponding to the control system
of Fig. 18.9~ is shown in Fig. 18.9b.*  To obtain some specific control system
responses, numerical values of the time constants of the tanks have been chosen
as shown in Fig. 18.9b.  To study the response of this control system, the block
diagram shown in Fig. 18.9b  was simulated on a computer. The values of Kc
and ~1  were chosen by trial and error to give the response to a step change in
set point shown in Curve II of Fig. 18.10; this response, which has a decay ratio
of about i, was obtained with K, = 2.84 and ~1  = 5.0. The Ziegler-Nichols
settings (K, = 3.65 and 71  = 3.0) give a set-point response shown as Curve I of
Fig. 18.10, which is too oscillatory. Having obtained satisfactory settings for the
controller (K, = 2.84, 71  = 5.0),  the response of the system to a step change in
Ci of 10 units was obtained and is shown as Curve I in Fig. 18.11. Note that the
response is oscillatory and has a long tail. This response illustrates the fact that the
feedback control system does not begin to respond until the load disturbance has
worked its way through the forward loop and reaches the measuring element, with
the result that the composition can move far from the set point during the transient.

*In Figure 18.9u,  concentration is denoted by c (lower-case letter). In the block diagram of the
process in Fig. 18.9b,  the symbol for concentration is denoted by C (capital letter) to denote a
deviation variable. This use of symbols follows the procedure established in Chap. 5.

FIGURE 18-11
Responses to a step change in load for
feedforward-feedback control.
Curve I: PI control with K, = 2.84, 71 = 5.0
Curve II: FF control with K, = 2.84, ~1 =
5.0, Gf = -1/(5s  + 1)
Curve III: FF control with K, = 2.84, q =
5.0, Gf  = -1
Curve IV  FF control with K, = 2.84, q =
5.0, Gf  = -0.5
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If the change in load disturbance (Ci)  can be detected as soon as it occurs
in the inlet stream, this information can be fed forward to a second controller
that adjusts the control valve in such a way as to prevent any change in the outlet
composition from the set point. A controller that uses information fed forward from
the source of the load disturbance is called a feedforward  controller. The block
diagram that includes the feedforward controller (Gf) as well as the feedback
controller (G,) is shown in Fig. 18.12.

Analysis of Feedforward  Control
The response of C to changes in Ci and R can be written from Fig. 18.12 as
follows:

C(S)  = Gl(s)Gp(s)Ci(s)  + Gf(s)Gp(s)Ci(s)  + Gc(s)Gp(sW(s) (18.3)

where E(s) = R(s) - C(s)

In order to determine the transfer function of Gf(s)  that will prevent any
change in the control variable C from its set point R, which is 0, we solve Eq.
(18.3) for Gf(s)  with C = 0, R = 0. The result is

Gjb)  = -G(s) (18.4)

For the example under consideration in Fig. 18.12.

Gj(s)  = -1/(5s  + 1) (18.5)

This transfer function can be implemented easily with control hardware now avail-
able.

If the load response of the control system in Fig. 18.12, with G&)  given
by Eq.  (18.5),  were obtained for a step change in C i , there would be no deviation
of C from the set point (i.e., perfect control). This response is shown as Curve
II  in Fig. 18.11, which, of course is a horizontal line at C = 0.

Gl GP

ci
1

l

- 5s+l
, - A - -

(s + 93

Feedfotward
- c o n t r o l l e r

G,(s)

GC + GP
-I

A+
(s + 1)3 4

Feedback Contro l ler

FIGURE 18-12
Control system with feedback and feedforward controllers.
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Rather than use the Gf(s)  of Eq. (18.5) in the feedforward controller, one
can try using only the constant term of Gf(s),  that is,

Gf(s)  = -1

The response for Gf = - 1 gives Curve III in Fig. 18.11; this response has a
very large undershoot before the feedback controller returns C to the set point. If
we try using Gf(s)  = -0.5, we obtain Curve IV of Fig. 18.11; the undershoot
is less in this case, but the response is still unsatisfactory. As shown by Curves
III and IV, omitting the dynamic part of Go can give very poor results. The
success of using a feedforward controller depends on accurate knowledge of the
process model, a luxury that may not be available in many applications.

Implementing Feedforward lkansfer  Functions
In applications of feedforward control, Gf(s)  may take the form of a lead expres-
sion, such as Gf(s)  = 1 + rfs.  When this occurs, it is necessary to approximate
1 + rfs  by a lead-lag expression, such as

Gf(s)  = (1 + rfs)/(l  + &s)

where p <<  1. To see how Gf(s)  takes the form of a lead exptission,  consider the
load disturbance, ci, of Fig. 18.9 to enter tank 2. Since no change in concentration
occurs in the stream entering the preconditioning tank, we may eliminate it from
the diagram for the case under consideration to obtain the diagram in Fig. 18.13.

Adding feedforward control and feedback control to the system in Fig. 18.13
gives the block diagram of Fig. 18.14. The diagram shown in Fig. 18.14 is the
same as that in Fig. 18.12 with the exception that the disturbance Ci enters tank
2 instead of the preconditioning tank. As shown previously, the response of C to
a change in Ci and R can be written directly from Fig. 18.14 as follows:

C(S)  = Gl(s)Ci(s)  + Gf(S)Gp(s)Ci(s)  + Gc(s)Gp(s)E(s) (18.6)

where E(s) = R(s) - C(s)

I I I
tank 1 t a n k  2

FIGURE 18-13
Composition control with disturbance to second tank.

I I
t a n k  3
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FIGURE 18-14
Feedforward-feedback control for system in Fig. 18.13.

In order for C not to change from the set point R, which is 0, we solve Eq.( 18.6)
for Gf(s)  with C = 0 and R = 0 to obtain:

G ( s )Gf(s) =  - -
G&)

(18.7)

Introducing the expressions for Gt(s) and Gp(s)  from Fig. 18.14 into Eq. (18.7)
gives

Gf(s)  = -(s  + 1) (18.8)

It is not practical to implement -(s  + 1). To see this, consider the response of
-(s  + 1) to a step change as shown in Fig. 18.15. There is no hardware that
will produce an impulse as shown in Fig. 18.15; however, one can approximate
-(s  + 1) by means of a lead-lag transfer function of the form.

‘y(S)-=- TfS  + 1

X(s) prfs + 1
(18.9)

If we iet p = 0.1 and rf = 1 for the control system under consideration, we
obtain as an approximation to Eq.  ( 18 3)

$0)  = -,;,‘I  I (18.10)

t

FIGURE 18-15
Step response for -(s + 1).
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-Y=(lO-1)C"O.l  +l

-1 --_-_-_.

Y

FIGURE 18-16
-10 Step response for -(s + l)/

(0.1s + 1).

The response of this transfer function to a step input is shown in Fig. 18.16.
The effect of this transfer function, -(s  + l)/(O.ls  + l), on the output of the
feedforward controller for a step change in load is to give a sudden drop in flow
followed by a fast exponential increase in the flow to a steady-state flow of - 1.
Note that for the parameters chosen for the transfer functions in Fig. 18.14, a unit
increase in Ci  must eventually be compensated by a unit decrease in the signal
from the feedforward controller if there is to be no change in the process output.
The sudden, initial drop in flow may be too abrupt for the control hardware, in
which case the output would saturate. In practice, /3 can be increased (perhaps to
0.5) in order to reduce the magnitude of the initial drop.

The effect of using Gf(s)  = -(s  + l)/(O.  1s + 1) with feedback control is
shown in Fig. 18.17. The responses shown, which were obtained by simulation,
are for a unit-step change in Ci.  Curve I is for the case of feedback control only
with K, = 2.84 and rI = 5 .O. Curve II is for feedforward-feedback control
using Eq. (18.10) for Gf(s)  and K, = 2.84 and 71  = 5.0. One can see that the
overshoot for the feedforward-feedback response has been reduced significantly.

Thing Rules for FIzedforvmrd-Feedback  Control
In the practical application of feedforward control, one does not have a block
diagram with transfer functions as shown in Figs. 18.12 and 18.14. For such a
practical situation, one can still tune the feedforward controller by introducing a
step change in the disturbance that enters the feedforward controller (Ci in Fig.
18.14) and then applying some tuning rules. The rules to be discussed here are
from a training film on feedforward control produced by the Foxboro Co. (1978).

Feedforward Rules
In describing these rules, reference will be made to the general block diagram
for a feedforward-feedback system shown in Fig. 18.18. It is assumed that Gf(s)
will be a lead-lag transfer function of the form

Gf(s)  = Kf(Tls  + 1)/(T2s + 1) (18.11)

where Kf = steady-state gain of the feedforward controller
T1,  T2 = time constants of dynamic part of the feedforward controller
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0.40
0.35
0.30
0.25

0 0.20

FIGURE 18-17
Comparison of conventional feedback
control with feedforward-feedback control
for system shown in Fig. 18.14.
Curve I: PI control with K,  = 2.84 and
71  = 5
Curve II: Feedforward-feedback control
with K,  = 2.84, rI = 5, and Gf =

.-(s + l)/(O.lS  + 1)

Commercial microprocessor-based controllers provide this lead-lag transfer func-
tion.

The tuning rules listed below are explained with the help of Fig. 18.19. In
that figure, a unit step is selected for the distubrance Ci and Kf has been taken
as - 1. In practice, Kf will, of course, depend on the particular process being
controlled.

1. Remove the control action in G,(s) by setting the controller to manual.
2. Set the feedback controller to the computed steady-state gain (Kf)  necessary

to compensate ultimately for a step change in C i . This means that the dynamic
portion of Gf(s)  will be removed and only the constant term (Kf)  will remain.

3. Make a step change in Ci and observe the open-loop transient of C. The
general shapes of the response to be expected are shown in Fig. 18.19.

4. If the response shown in Fig. 18.19~  occurs, lead must predominate in Gf(s)
of Eq. (18.11) (i.e., Tt > Tz). If the response of Fig. 18.19b  occurs, lag must
predominate in Gf(s)  (i.e., Tr  < 7’2).  The values of Tt and T2 in Eq. (18.11)
are found by use of the information in Table 18.1. The value of Kf in Eq.
(18.11) has been obtained in step 2.

The next example will help clarify the use of these tuning rules.

c
FIGURE 18-18
Feedforward-feedback control

I system.
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(a)
FIGURE 18-19

0 t
MiY  ”

-1, :

@I

Open-loop response to determine lead-lag time constants in feedforward tuning rules: (a) lead must
predominate in Gf ; (b) lag must predominate in Cf.

Example 18.3. Use offeedfonvard tuning rules. Apply the feedforward tuning rules
to the system in Fig. 18.14. Since this example is concerned with  the application
of the tuning rules to a system for which a mathematical model is not generally
available, the reader should assume that the transfer functions for G l(s) and G, (s)
in Fig. 18.14 are unknown. The determination of Gf(s)  is to be obtained solely by
information from open-loop transients.

We must first determine the steady-state gain (Kf)  for the system of Fig.
18.14. If a step change in Ci is made, C will undergo a transient and eventually
level out at a steady-state value. If the controller parameters are properly selected,
the value of C at the end of the transient will be the same as it was before the
transient occured. By computation or experiment, one can determine the value of
Kf needed to obtain no change in C. For the system in Fig. 18.14, one can see that
Kf of Eq. (18.11) must be equal to -1.

We must now apply the feedforward tuning rules to obtain Tr and T2 in
Eq. (18.11). After removing the feedback controller action [G,(s)] we have the
equivalent diagram shown in Fig. 18.20. A unit-step change in Ci produces the

TABLE 18.1
nning  parameters for feedforward control

Predominant mode Tl T2

Lead ISr, 0.7t,

Lag 0.7tp 1.3,

Tls + 1
Gf(S)  = Kf T2s+l
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FIGURE 18-20
C Open-loop feedforward test to deter-

mine parameters for Cf.

transient for C shown as Curve I in Fig, 18.21. Comparing the shape of the transient
with those of Fig. 18.19, we see that lead must predominate in Gf(s).  The peak
value occurs at tp = 2. Applying the rules in Table 18.1 gives

TI = lSt,  = 3

T2  = 0.7t,  = 1.4

The feedforward controller transfer function is therefore

Gf(s)  = -(3s  + 1)/(1.4s + 1) (18.12)

It is of interest to show the response of C for feedforward only when the
feedforward transfer function of Eq. (18.12) is used; the result for a unit-step change
in Ci is shown as Curve II in Fig. 18.21.

When the Gf(s)  of Eq. (lg.12)  is used and the controller parameters for
G,(s) are Kc  = 2.84 and rl = 5.0, the feedforward-feedback response to a unit-
step change in Ci is shown as Curve II in Fig. 18.22. For comparison, the response
for feedback control only is also shown in Fig. 18.22.

RATIO CONTROL
An important control problem in chemical industry is the combining of two or
more streams to provide a mixture having a desired ratio of components. Examples
of this mixing operation include the blending of reactants entering a chemical
reactor or for the injection of a fuel-air mixture into a furnace.

In Fig. 18.23~ is shown a control system for blending two liquid streams A
and B to produce a mixed stream having the ratio K, in units of mass B/mass A.
Stream A, which is uncontrolled, is used to adjust the flow of stream B so that
the desired ratio is maintained. The measured signal for stream A is multiplied by

JTlGURE  18-21
Open-loop response for step change in C; for
Example 18.3.
CurveI:  Gf = -1
Curve II: Gf = -(3s + 1)/(1.4s  + 1)
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FIGURE 18-22
Comparison of conventional feedback control
with feedforward-feedback control for Example
18.3.
Curve I: PI control with
K, = 2.84,q  = 5.0
Curve II: Feedforward-feedback control with
K, = 2.84, r1  = 5.0, and Gf =
-(3s + 1)/(1.4s  + 1)

the desired ratio K, to provide a signal that is the set point for the flow-control
loop for stream B. The parameter K, can be adjusted to the desired value. Control
hardware is available to perform the multiplication of two control signals.

A block diagram of the ratio control system is shown in Fig. 18.23b.  In
a flow-control loop, the dynamic elements consist of the controller, the flow-

Ruid A
I
I

) qA

flow-hmasnHng

Contro l le r

f low-measur ing
e lement

Lb
F lu id  B
pB  = Supply pressure

I
I ) 48

Q A G, measured
QS

var iab le

FIGURE 18-23
(b)

(a) Ratio control system; (b) block diagram for ratio control (set point = G,,K,QA).
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measuring element, and the control valve. For incompressible fluids, there is no
lag between the change in valve position and the corresponding flow rate. For
this reason, the transfer function between the valve and the measurement of flow
rate is simply unity. The block diagram also shows a transfer function G, that
relates. the flow rate of B to the supply pressure of B. A transfer function G,,
is also shown that represents the dynamic lag of the flow measuring element for
stream A.

From the block diagram, the flow of B may be written:

QB = GmtKrGcGv QA + 1 + GG; G
1 + Gc'SGm,

PB
c Y m2

The control action for a flow-control system is usually PI. The integral action
is needed to eliminate offset and thereby establish a precise ratio of the mixed
streams of A and B. Derivative action is usually avoided in flow control because
the signal from a flow-measuring element is inherently noisy. The presence of
derivative action would amplify the noise and give poor control.

DEAD-TIME COMPENSATION
(SMITH PREDICTOR)
Processes that contain a large transport lag [exp ( -T~s)]  can be difficult to control
because a disturbance in set point or load does not reach the output of the process
until TO  units of time have elapsed. The control strategy to be described here,
which is also known as dead-time compensation, attempts to reduce the deleterious
effect of transport lag. Dead-time compensation, which is also referted  to as a
Smith predictor, was first described by 0. J. M. Smith (1957).

Consider the single-loop control system of Fig. 18.24 in which the process
transfer function Gp(s)  is to be modeled by

G,(s)  = G(s)e-DS (18.13)

The right side of Q. (18.13) is the product of a transport lag [exp( - rgs)]
and a transfer function G(s), which has minimum phase characteristics, such as
l/(rs  + 1). For convenience in developing the dead-time compensation method,
only a change in set point R will be’ considered. If a step change is made in R,

FIGURE 18-24
Control system.
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the disturbance will not break through and appear at C until 7~  units of time elapse.
Up to time ro. no control action occurs, with the result that the overall closed-
loop response will be sluggish and generally unsatisfactory. To overcome this
difficulty, Smith suggested that G&)  be modeled according to Eq. (18.13) and
that additional feedback paths be inserted into Fig. 18.24 as shown in Fig. 18.2%.
If Gp(s)  is modeled exactly by Eq.  (18.13),  a close study of Fig. 18.25a  shows that
the signals entering comparator A will be identical; as a result, the signals cancel
and cause the output of comparator A to be zero. The net effect is to completely
eliminate the outer feedback path; this simplification is shown in Fig. 18.258.

The system of Fig. 18.25b  is now much easier to control because the trans-
port Iag is not present in the loop. Of course, in the real system the transport
lag is still present; we have eliminated it in a mathematical sense from the feed-
back path by the additional feedback paths of Fig. 18.25~  and the assumption
that the process transfer function, Gp(s)  can be modeled exactly as shown in Eq.
(18.13). To achieve the simplification suggested by Fig. 18.25b  we must now
face reality and realize that the signal Ct in Fig. 18.25b  is not available to feed
back. Only the signal C can be measured and fed back to the controller. In terms
of controller hardware implementation, the diagram of Fig. 18.25~  is redrawn in
Fig. 18.26~  to show which portion of the diagram will be implemented with con-
troller hardware. Figure I8.26b, which is another way to represent Fig. 18.26a,
is a form sometimes presented in the literature for dead-time compensation. The
reader may legitimately ask whether or not hardware exists to actuahy  imple-
ment what is shown within the dotted lines in Fig. 18.26. Until the appearance

R C

FIGURE 18-25
(a) Dead-time compensation (Smith predictor) block diagram; (b) Equivalent diagram for part (a)
when GP  = G(s)e-ws.
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of microprocessor-based controllers, the answer was no. However, today many
commercially available controllers provide dead-time [exp(-TgS)]  and G(s) in
the form of a first-order lag [l/(~s + l)]. Features such as these will be discussed
in Chap. 35.

The recommended procedure for applying dead-time compensation is as
follows:

1. By means of an open-loop test of the process, model Gp(s)  by the transfer
function

1
-e -TDS
7s + 1

In this step, we have chosen G(s) of Fig. 18.26~  to be first-order. Many
processes in chemical engineering can be modeled by a first-order lag with
dead-time.

2. By means of appropriate hardware, implement the controller portion of Fig.

Controlkr____-__-__--_--_------~-
I
i I

R

I

I
I
I
1__--~------------------ 1

Controllerr------------------------~

I

I
I.

FIGURE 18-26
Hatdwanz  implementation of dead-time compensation.
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18.26~~  or Fig. 18.26b.  If G,(s) can be exactly modeled by a first-order pro-
cess with dead-time, the response of the control system in Fig. 18.26 will be
equivalent to the  response obtained for the system in Fig. 18.2% in which the
loop involves the control of a first-order process. In most practical situations,
there will be some mismatch between GJs)  and its model of first-order with
dead-time. The greater the mismatch, the greater the deterioration in control
response from the ideal situation of Fig. 18.256. The application of the dead-
time compensation technique and the effect of mismatch between Gp(s) and
its model will be illustrated in the next example.

Example 18.4. Dead-time compensation. Consider the control system shown in
Fig. 18.27 in which the process is fourth-order; thus -

4

In a practical situation, we would not know the transfer function of the process.
In this example, we have taken the process model to be fourth-order to provide a
system sufficiently complex to show considerable transfer lag.

One can show for the system in Fig. 18.27 that the ultimate gain and the
corresponding period are: K,, = 4.0 and P, = 27~.  Using the Ziegler-Nichols
rules, one gets K,  = 2.0. The response for a unit-step change in set point for
K, = 2 is shown in Curve I of Fig. 18.29. Notice that the decay ratio is about

1
4.

We shall now use the dead-time compensation method to control the process

G,(s)

R=
l4(I-zi

-1.5s 1

-4 >
l - e 3s+l

-c

FIGURE 18-28
Dead-time compensation for Example 18.4.
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II Dead- t ime compensat ion ,  K,= 4

I Convent iona l  cont ro l , K,=  2

FIGURE 18-29
Comparison of response for con-
ventional control with response

I I I I I I I I I I for dead-time compensation for
0 15 3or Example 18.4.

in Fig. 18.27. If one fits the step response of (S  + 1)-4  to a first-order with dead-time
model, one obtains

1e-1.5s
3s +  1

This model was obtained from a unit-step response using a least squares fit procedure.
We can now draw the diagram for the dead-time compensation system as shown in
Fig. 18.28. The system shown in Fig. 18.28 was simulated by computer in order
to compare the responses of the two control systems as shown in Fig. 18.29. Using
a K,  of 2.0 (the Ziegler-Nichols value) for the conventional control we see from
Curve I that the response is quite oscillatory and has an offset of 0.333 as required
for this value of gain. Using a K, of 4.0 for the dead-time compensation, we see
that the response is less oscillatory and the offset is 0.20. It should be noted that if
a K, of 4.0 were applied to the conventional control system, the system would be
on the verge of instability since a K, of 4.0 is the ultimate gain.

In conclusion, the dead-time compensation has permitted the use of a higher
value of Kc,  reduced the offset, and produced a less oscillatory response. The dead-
time compensation response shown in Fig. 18.29 can be improved by adding integral
action to the controller and tuning the controller parameters.

To successfully apply dead-time compensation to the control of a process, one
must have an accurate model of the process, such as a first-order with dead-time
model. The parameters in this model (r and 7~) can be considered as controller
parameters along with the controller parameters of G,(s). For the case of dead-time
compensation with proportional control in Example 18.4, we actually have three
controller parameters: Kc,  713,  and 7. If the process dynamics [G&)] changes, all
three parameters may need adjustment in order to achieve good control.

INTERNAL MODEL CONTROL
Internal model control (IMC) has been the subject of intense research since about
1980. This method of control, which is based on an accurate model of the pro-
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cess,  leads to the design of a control system that is stable and robust. A robust
control system is one that maintains satisfactory control in spite of changes in the
dynamics of the process. In applying the IMC method of control system design,
the following information must be specified:

Process model
Model uncertainty
Type of input (step, ramp, etc.)
Performance objective (integral square error, overshoot, etc.)

In many industrial applications for control systems, none of the above items
is available, with the result that the system usually performs in a less than optimum
manner. Determining the mathematical model and its uncertainty can be a diffi-
cult task. When the process is not sufficiently understood to obtain a mathematical
model by applying fundamental principles, one must obtain a model experimen-
tally. A discussion on the modeling of a process is presented in the next chapter.
The choice of a performance objective is subjective and often arbitrary. In the
IMC method, the integral square error is implied.

A simple description of the IMC method will be presented here. The in-
terested reader is advised to consult the book by Morari and Zafiriou (1989) for
a full treatment of internal model control. The literature on IMC is difficult to
understand without a good foundation in control theory and mathematics. A full
treatment of IMC is beyond the scope of this text. It is hoped that the simple
treatment given here will stimulate interest in this important new area of process
control.

Internal Model Control Structure
A block diagram of an IMC system is shown in Fig. 18.30~.  Notice that the
diagram is similar to the diagram for the Smith predictor method shown in Fig.
18.25~.  In this diagram, G is the transfer function of the process and G,  is the
model of the process. Although G and G,  are called the transfer functions of
the process, they actually include the valve and the process. The transfer function
of the measuring element is taken as 1.0. The portion of the diagram that is
implemented by the computer includes the IMC controller and the model; this
portion is surrounded by the dotted boundary.

In order to compare the IMC structure of Fig. 18.30~  with the conventional
control structure, the diagram of Fig. 18.30~  has been rearranged as shown in Fig.
18.30b.  For convenience, the transfer function through which the load U passes
has been omitted. We show only the output from the load block (Ui). We may
use the structure in Fig. 18.30b  to relate the IMC controller to the conventional
controller. Replacing the inner loop of Fig. 18.30b  with a single block gives the
structure shown in Fig. 18.30~.  Since this structure is the conventional single-
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FIGURE 18-30
Internal model control structures: (a) basic structure, (b) alternate structure, (c) structure equivalent
to conventional control.

loop control structure, we can identify the single controller block as G,. After one
designs the IMC controller (GI)  by the method to be described, one can determine
the equivalent conventional controller G,  by the relation

G, = G1/(l  - GIG,)

For the structure shown in Fig. 18.30a,  one can show that

(18.14)

c = u1+ GGr
1 + G,(G - G,) ER  - Ull (18.15)
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If the model exactly matches the process (i.e., G,  = G), the only signal
entering comparator 1 in Fig. 18.30~  is Ut . ( The signals from G and G,  are
equal and cancel each other in going through comparator 2.) Since Ut is not the
result of any processing by the transfer functions in the forward loop, Ut is not
a feedback signal but an independent signal that is equivalent to R in its effect
on the output C. In fact, there is no feedback when G = G,  and we have an
open-loop system as shown in Fig. 18.3 1, In this case the stability of the control
system depends only on GI  and G,. If GI  and G,  are stable, the control system
is stable.

Ideally, we should like to have C track R without lag when only a set-point
change occurs (i.e., Ut = 0). In order for this to occur, we see from Fig. 18.3 1
or Eq. (18.15) that GIG = 1 or since G = Gmr  we may write GIG,  = 1.
Solving for GI  gives

GI  = l/G, (18.16)

Equation (18.16) simply states that the IMC controller should be the inverse of
the transfer function of the process model. Keep in mind that Eq. (18.16) is based
on the assumption that the model exactly matches the process.

For the case of only a change in load lJ1  (i.e., R = O),  we should like to
have the output C remain unchanged (i.e., C = 0). In order for this to occur, we
see again from Fig. 18.31 or Eq. (18.15) that GIG,  = 1; this leads to the same
result as given by Eq. (18.16).

Even if there is no mismatch between the model and the process, the ap-
plication of Eq. (18.16) will usually lead to a transfer function that cannot be
implemented because it will be unstable, requires prediction, or requires pure dif-
ferentiation. For example, if G, = l/(rs  -t l), the application of Eq. (18.16)
gives

GI  = TS  +  1

This result is equivalent to an ideal PD controller, which cannot be implemented
because of the derivative term. If G,  = e -“/(rts  + l), we obtain

Gr  = (~1s  + l)e7’

The term ers, which represents prediction, cannot be implemented. If G,  =
(1 - s)/[(l + s)(rs + l)]

GI  = [(l  + s)(rs  + l)]/( 1 - s)

FIGURE 18-31
IMC structure when model matches Dro-

fJ1 cess  (G, = G).
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The term 1 - s in the denominator means that a pole is in the right half plane,
which leads to an unstable controller. With such difficulties of implementation of
the internal model controller, one might ask if any practical result can be obtained.
These difficulties can be overcome by application of the following simplified
procedure.

Design of IMC Controllers
In using these rules, only a step change in disturbance is considered. The procedure
for disturbances other than a step response is more complicated and beyond the
scope of the limited discussion presented here.

1. Separate the process model G,  into two terms

Gm  = Gm,Gm, (18.17)

where G,, is a transfer function of an all-pass filter. An all-pass
filter is one for which IG,,(jw)l  = 1 for all w.  Examples are e-Q’  and
(1 - s)/(l + s). G,, is a transfer function that has minimum phase character-
istics. A system has non-minimum phase characteristics if its transfer function
contains zeros in the right half plane or transport lags, or both. Otherwise, a
system has minimum phase characteristics. For a step change in disturbance
(R = l/s or Ui = lls),G,  is determined by

Gr  = l/G,, (18.18)

For a disturbance other than a step change, obtaining Gr is more complicated
and the reader is referred to Morari and Zafiriou (1989).

The results of applying Eq. (18.18) will yield a transfer function that is
stable and does not require prediction; however, it will have terms that cannot
be implemented because they require pure differentiation (e.g., rs + 1).

2. To obtain a practical IMC controller, one multiplies GI  in step 1 by a transfer
function of a filter, f(s). The simplest form recommended by Morari and
Zafiriou is given by

f(s) = l/(As + 1)” (18.19)

where A is a filter parameter and n is an integer. The practical IMC controller
(GI)  can now be expressed as

Gr = fJGm, (18.20)

The value of n is selected large enough to give a result for GI that does not
require pure differentiation. For the simple treatment of IMC design presented
here, A will be considered as a tunable parameter. In the full treatment of IMC
given by Morari and Zafiriou, A can be related to the model uncertainty. In
practice, model uncertainty may not be available, in which case one is forced
to treat A as a tunable parameter.

3. If one wants to obtain the conventional controller transfer function Gc,  use is
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made of Eq. (18.14),  with GI obtained from Eq. (18.20). For many simple
process models,G,  turns out to be equivalent to a PID controller multiplied by
a first-order transfer function; thus

(18.21)

where K,, rD, r[ and rt are functions of A and the parameters in GI and
G,. The examples that follow will illustrate the application of this simplified
procedure for designing an IMC controller.

Example 18.5. Internal model control. Design an IMC controller for the process
which, is first-order:

G, = K/(Ts + 1)

For this case G,, = 1 and G,, = K/(Ts  + 1). Applying Eq. (18.18) gives

GI = l/G,, = (7s + l)/K

In order to be able to implement this transfer function let f(s) = l/(As  + 1). The
IMC controller becomes

17s+lGI = - -
KAs+l

This result is a lead-lag transfer function that can be implemented with modem
microprocessor-based controllers. We may now obtain G, from Eq. (18.14)

G,  z.z  GI

1 -GIG,

Introducing the expressions for GI and G,,, into this equation gives

G, =
7s + 1

K(hs  + 1)

’ - &++‘l)  ?h

This result is in the form of a PI controller:

K,  = r/AK 71 = 7

Although this design procedure results in the equivalence of a PI controller, only
one parameter (A) must be used to tune the controller. This is a distinct advantage
over the use of a conventional controller in which both K,  and 71 must be tuned.

Example 18.6. Internal  model control. Design an IMC controller for a process
which is first-order with transport lag:
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In the model of this process, use as an approximation to the transport lag a first-order
Pad6  approximation [See Eq. (8.47)], thus

e-7dS =
1 - (Td/2)S
1 + (7d/2)s

The model becomes

G _  K 1 - (Td/2b 1
m-

1 +  (Td/2)s  7s  +  1

For this model,

G =
1 - (7d/2)s

ma 1 + (Td/2)s
(an all-pass filter)

and

G
K

mm =-
7s + 1

Following the same steps as used in Example 18 S, we obtain for the IMC controller

It is instructive to see the form G, takes for this example. Applying Eq. (18.14)
gives

7s + 1
Gc = G1 = K(As + 1)

1 -GIG, 7s + 1 K[l  - (Td/T)s]
’ - K(hs + 1) [l + (T&)s](Ts  + 1)

This may be reduced algebraically to the form given by Eq. (18.21) with

K

c
= 27  + Td

2(A + Td)

71  =  7 +  (Td/2)

rrd

TO = 27 + rd

hrd

" = 2(h + 7d)

The response of this first-order with transport lag system for several values of A and
forK  = 1, r = 1, rd = 1 isgiveninFig.  18.32. ThevaluesofK,,  71, rd, and71
obtained from the above relations are shown in Table 18.2. Notice that once a model
is accepted, the tuning of the modified IMC controller [Eq. (18.21)] depends only
on the choice of A. For the range of A used, Fig. 18.32 shows that the step response
is only slightly oscillatory for all values of A and the fastest response is for A = 0.5.
Also notice that A affects only K, and ~1.  This example shows that the design of a
controller by the IMC method is a straightforward procedure and leads to a controller
that requires the adjustment of only one parameter, A.
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1.80
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FIGURE 18-32
Response for IMC-designed controller of Example 18.6.

It is instructive to compare the response for the IMC-derived controller with
the response for a PI controller using Ziegler-Nichols settings. The responses, which
are given in Fig. 18.33, show that for this  particular example the controller using
Z-N settings produces a response with less overshoot and a higher frequency of
oscillation than the controller designed by the IMC method.

These two examples show clearly how the parameters of the conventional
controller G, are related to the parameters of the model and the filter.

The treatment of internal model control presented here has been limited to sin-
gle input/single output continuous systems for which the disturbance is a step change.
Furthermore, we have not discussed the use of model uncertainty in selecting the
filter parameters. Internal model control has been extended to sampled-data control
systems and to multiple input/multiple output systems. IMC is a new approach to the
design of control systems that considers the process model as an essential part of the
control system design. As the method becomes better understood it will most likely
affect the design of industrial control systems. Microcomputer-based controllers now
have the capability of implementing many of the control algorithms designed by the
IMC method. There is no longer a need to be tied to the classical control algorithms.

TABLE 18.2
IMC derived controller settings for Example 18.6

A 0.5 1.0 1.5 2.0
KC 1.0 0.75 0.60 0.5
71 1.5 1.5 1.5 1.5
70 0.33 0.33 0.33 0.33
71 0.167 0.25 0.30 0.33
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.6  - Comparison of  response for  IMC control ler

.4  - and conventional controller for Example 18.6:

.2  - I IMC-derived controller with A = 1.0,
0.0 I I I I I I I I II PI controller with Ziegler-Nichols settings

0 5 I (K,  = 1.02, q = 2.84).

S U M M A R Y

In this chapter, we have examined five advanced control strategies. The first three
on cascade control, feedforward-feedback control, and ratio control are advanced
only in the sense that each strategy is more complex than the single-loop systems
we have encountered up to this chapter. These three strategies are used extensively
in industry and modern microprocessor-based controllers can implement them
easily. The other strategies, on Smith prediction and internal model control (IMC),
are less likely to be used in industry and are closely related in their block diagram
structure. Of the five control strategies, the IMC method has the most rigorous
mathematical foundation and is presently the focus of intense academic research.
Three  of the strategies, feedforward-feedback, Smith prediction, and IMC, are
dependent on accurate models of the processes for their application.

Cascade control is especially useful in reducing the effect of a load dis-
turbance that is located far from the control variable and which moves through
the system slowly. The presence of the inner control loop reduces the lag in the
outer loop with the result that the cascade system responds more quickly to a load
disturbance.

If a particular load disturbance occurs frequently, the quality of control can
often be improved by applying feedforward control. Ideally the transfer function of
the feedforward controller is obtained from knowledge of the model of the process.
In cases where the feedforward controller transfer function requires prediction (for
example rfs  + I), one must be satisfied with an approximation of the feedforward
controller, which takes the form of a lead-lag transfer function. When a model
of the process does not exist, the feedforward controller can be tuned after doing
some open-loop step tests that relate the control variable to the load disturbance. To
provide for load disturbances that cannot be measured or anticipated, feedforward
control is always combined with feedback control in a practical situation.

Ratio control is widely used in industry in the blending of two component
streams (A and B) to produce a mixed stream of desired composition (i.e., ra-
tio of components). Ratio control is essentially a flow-control problem in which
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the flow measurement of stream A (the wild stream) is used to compute the set
point for the flow of stream B so that the desired ratio of components will be
obtained.

The Smith predictor control scheme (dead-time compensation) was devel-
oped to improve the control of a system having a large transport lag. The method
is based on a model of the process that is first-order with dead time. By intro-
ducing inner loops that contain elements of the transfer function of the model,
the control system is transformed ideally to one without transport lag, a system
that is much easier to control. This ideal situation occurs when the process and
the model are in exact agreement. In reality, the success of the Smith predictor
strategy depends on the degree of agreement between process and model.

Internal model control resembles the Smith predictor strategy in terms of
the structure of the block diagram. To apply the IMC method, one must have an
accurate model of the process, the model uncertainty, the type of disturbance (step,
ramp, etc.) and the performance objective (integral of square error). The method,
which is based on a rigorous mathematical foundation, leads to an IMC controller
that is the best that can be designed in terms of the performance objective. The
IMC structure can be reduced to a conventional control structure in which the
conventional controller is related to the IMC controller and the parameters of
the model. For many simple processes with simple disturbance (impulse, step,
etc.), the equivalent conventional controller based on the IMC design method
turns out to be the equivalent of a PID controller.

PROBLEMS
18.1. (a) Obtain Gffor  the feedforward-feedback system shown in Fig. P18.1 so that C

does not change when a disturbance in Ci  occurs. Would there be any problem
in implementing this Gf?

(b)  If Gf  is to be a lead-lag transfer function

Tls+  1
T2s  + 1

C;=l 1
s+l

+ +

(s 11p
+

C

FIGURE PM-1
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determine Tt and T2 by the Foxboro rule. How do you determine whether lead
or lag is to predominate? Use t,,  = 1 .O in the Foxboro rule.

(c) When feedforward-feedback control is present, sketch the response C(t) when
Ci = l/s and when Gf from part (a) is used.

(d)  Repeat (c) when Gf from part (b) is used. Only a rough sketch that suggests
the transient response is expected in this case.

(e) Determine C(t) when Ci = l/s, and Gf = - 1, and the feedback loop is
broken at AA. Obtain the numerical value of C(t) at t = 0.5,1.0,  and 1.5.
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IDENTIFICATION

The selection of a controller type (P, PI, PID) and its parameters (K,, 71,  ro) is
intimately related to the model of the process to be controlled. The adjustment
of the controller parameters to achieve satisfactory control is called tuning. The
selection of the controller parameters is essentially an optimization problem in
which the designer of the control system attempts to satisfy some criterion of
optimality, the result of which is often referred to as “good” control. The process
of tuning can vary from a trial-and-error attempt to find suitable control parameters
for “good” control to an elaborate optimization calculation based on a model of
the process and a specific criterion of optimal control. In many applications, there
is no model of the process and the criterion for good control is only vaguely
defined. A typical criterion for good control is that the response of the system to
a step change in set point or load should have minimum overshoot and one-quarter
decay ratio. Other criteria may include minimum rise time and minimum settling
time.

In the first part of this chapter, some of the widely used tuning rules for con-
tinuous controllers will be presented. In the second part of the chapter, methods
for determining the model of a process from experimental tests will be described.
Determining the model of a process experimentally is referred to as process iden-
tijication.

2 8 2
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CONTROLLER TUNING
Before presenting tuning rules, some discussion of the effect of each mode in a
PID controller on the transient response of a controlled process will be instructive.

Selection of Controller Modes
Consider a typical loop as shown in Fig. 19.1 in which the process is second-order
and the measuring element is a transport lag. (The transfer function of the valve
is taken as 1.) Load responses for this process for four types of controllers (P,
PD, PI, PID) are shown in Fig. 19.2. For each response curve, the process was
subjected to a unit-step change in load (U = l/s)  and the controller parameters
were selected by tuning rules to be presented later. Regardless of the specific
tuning rules used, the responses shown in Fig. 19.2 are typical of well-tuned
controllers for systems found in industry. The nature of the response for each type
controller will now be described. (The reader should also refer to Figs. 10.7 and
17.14 to reinforce this discussion.)

PROPORTIONAL CONTROL. As shown in Fig. 19.2, proportional control pro-
duces an overshoot followed by an oscillatory response, which levels out at a
value that does not equal the set point; this ultimate displacement from the set
point is the offset.

PROPORTIONAL-DERIVATIVE CONTROL. For this case the response exhibits a
smaller overshoot and a smaller period of oscillation compared to the response for
proportional control. The offset that still remains is less than that for proportional
control.

PROPORTIONAL-INTEGRAL CONTROL. In this case, the response has about
the same overshoot as proportional control, but the period is larger; however,
the response returns to the set point (offset = 0) after a relatively long settling
time. The most beneficial influence of the integral action in the controller is the
elimination of offset.

B ems .

FIGURE 19-1
‘@pical  control system used to study the effect of controller modes on load responses shown in
Fig. 19.2.
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FIGURE 19-2
Load response of a typical contml  system using various

t 2 0 modes of control (process shown in Fig. 19.1).

PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL. As one might expect,
the use of PID control combines the beneficial features of PD and PI control. The
response has lower overshoot and returns to the set point more quickly than the
responses for the other types of controllers.

From the nature of the responses just described, we can make the follow-
ing generalizations. Integral action, which is present in PI and PID controllers,
eliminates offset. The addition of derivative action speeds up the response by
contributing to the controller output a component of the signal that is proportional
to the rate of change of the process variable.

For simple, low-order (first or second-order) processes that can tolerate some
offset, P or PD control is satisfactory. For processes that cannot tolerate offset
and are of low order, PI control is required. For processes that are of high-order
(those with transport lag or many first-order lags in series), PID control is needed
to prevent large overshoot and long settling time.

Before the availability of microprocessor-based controllers, it was customary
to select a controller based on price. Pneumatic and electronic controllers with pro-
portional action were the least expensive and those with PID action were the most
expensive. It was considered uneconomical to purchase a controller with more
control actions than needed by the process. Today this price incentive no longer
exists in the selection of the type of controller, for the modern microprocessor-
based controller comes with all three actions, as well as other functions such as
lead-lag and transport lag. A discussion of the features of modem controllers will
be given in Chap. 35. There is probably little justification to select a P or PD con-
troller for most processes. The PI controller is often the choice because it elim-
inates offset and requires only two parameter adjustments. “Ruring a PID con-
troller is more difficult because three parameters must be adjusted. The presence
of derivative action can also cause the controller output to be very jittery if there
is much noise in the signals. We now turn our attention to some of the criteria
for good control that are used to judge whether or not a control system is well
tuned.

Criteria for Good Control
Before we can be satisfied with the response of a control system for a choice
of control parameters, we must have some concept of what we want as an ideal
response. Most operators of processes know what they want in the form of a
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response to a change in set point or load. For example, a response that  gives min-
imum overshoot and $ decay ratio is often considered as a satisfactory response.
In many cases, tuning is done by trial and error until such a response is obtained.
In order to compare different responses that use different sets of controller param-
eters, a criterion that reduces the entire response to a single number, or a figure
of merit, is desirable.

One criterion that is often used to evaluate a response of a control system
is the integral of the square of the error with respect to time (ISE). The definition
of ISE is as follows:

Integral of the square of the error (ISE)

i

m
ISE = e2dt (19.1)

0

where e is the usual error (i.e., set point - control variable). For a stable system
for which there is no offset (i.e., e(m)  = 0), Eq. (19.1) produces a single number
as a figure of merit. The objective of the designer is to obtain the minimum value
of ISE by proper choice of control parameters. A response that has large errors and
persists for a long time will produce a large ISE. For the cases of P and PD control,
where offset occurs, the integral given by Eq. (19.1) does not converge. In these
cases, one can use a modified integrand, which replaces the error r(t) - c(t), by
c(w)  - c(t). Since c(m)  - c(t) does approach zero as t goes to infinity, the integral
will converge and serve as a figure of merit.

%vo  other criteria often used in process control are defined as follows:

Integral of the absolute value of error (ME)

(19.2)

Integral of time-weighted absolute error (ITAE)

ITAE =
I

m [ejt  dt (19.3)
0

Each of the three figures of merit given by Eqs. (19.1),  (19.2),  and (19.3) have
different purposes. The ISE will penalize (i.e., increase the value of ISE) the
response that has large errors, which usually occur at the beginning of a response,
because the error is squared. The ITAE will penalize a response which has errors
that persist for a long time. The IAE will be less severe in penalizing a response
for large errors and treat all errors (large and small) in a uniform manner. The ISE
figure of merit is often used in optimal control theory because it can be used more
easily in mathematical operations (for example differentiation) than the figures of
merit, which use the absolute value of error. In applying the tuning rules to be
discussed in the next section, these figures of merit can be used in comparing
responses that are obtained with different tuning rules.
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TUNING RULES
Ziegler-Nichols Rules (Z-N)
These rules were first proposed by Ziegler and Nichols (1942),  who were engineers
for a major control hardware company in the United States (Taylor Instrument
Co.). Based on their experience with the transients from many types of processes,
they developed a closed-loop tuning method still used today in one form or another.
The method is described as a closed-loop method because the controller remains
in the loop as an active controller in automatic mode. This closed-loop method
will be contrasted with an open-loop tuning method to be discussed later. We have
already discussed the Ziegler-Nichols rules in Chap. 17 as a natural consequence
of our study of frequency response. Ziegler and Nichols did not suggest that
the ultimate gain (K,,)  and ultimate period (PJ  be computed from frequency
response calculations based on the model of the process. They intended that K,,
and P, be obtained from a closed-loop test of the actual process. When the rules
were first proposed, frequency response methods and process models were not
generally available to the control engineers. The rules are presented below, and
are in the form that one would use for actual application to a-real process.

1. After the process reaches steady state at the normal level of operation, remove
the integral and derivative modes of the controller, leaving only proportional
control. On some PID controllers, this requires that the integral time (~1)  be set
to its maximum value and the derivative time (7~) to its minimum value. On
modern controllers (microprocessor-based), the integral and derivative modes
can be removed completely from the controller.

2. Select a value of proportional gain (K,), disturb the system, and observe the
transient response. If the response decays, select a higher value of K, and
again observe the response of the system. Continue increasing the gain in
small steps until the response first exhibits a sustained oscillation. The value
of gain and the period of oscillation that correspond to the sustained oscillation
are the ultimate gain (K,,) and the ultimate period (Pu).

Some very important precautions to take in applying this step of the
tuning method are given in the next section.

3. From the values of K,, and P,  found in the previous step, use the Ziegler-
Nichols rules given in Table 19.1 to determine controller settings (Kc,TI,TD).
This table is the same as Table 17.1 in Chap. 17.

Although variations in the tuning rules given in Table 19.1 are used by
industry, the same approach of using K,, and P, to obtain controller parameters
is used. The Ziegler-Nichols rules generally provide conservative (and safe)
controller settings. The Z-N settings should be considered as only approximate
settings for satisfactory control. Fine tuning of the controller settings is usually
required to get an improved control response.

The experimental determination of K,, and P, described in step 2 can
be replaced by a computation using frequency response methods if an accurate
model of the process, valve, and measuring element is known. This type of
calculation was done in Chap. 17.
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TABLE 19.1
Ziegler-Nichols controller settings

ljpe  of control G,(s) KC 71 70

Proportional (P) KC OSK,

Proportional-integral (PI) K,HL
i i71  s

0.45K,  $

Proportional-integral-derivative (PID) OAK, $ 2

PRECAUTIONS TO TAKE IN APPLYING THE Z-N METHOD. Some discussion
is needed to avoid some pitfalls in applying step 2 of the Z-N method to obtain K cu
and P, . These precautions are concerned with the type and size of the disturbance
that induces the response and with the avoidance of using a limit cycle as the
indication that the system is on the threshold of instability.

The simplest way to introduce a disturbance is to move the set point away
from the control variable for a short time and then return the set point to its original
value. This procedure, which is equivalent to introducing a pulse function in the
error, causes the system to respond and yet stay within a narrow band surrounding
the normal operating point of the process.

An alternate type of disturbance would be to introduce a small step change in
set point. If step changes in set point are used to induce transients, the successive
step changes should alternate around the normal operating point of the process. It
is also important to make the disturbance as small as possible, especially as the
gain of the controller is increased, so that the valve and other components do not
exceed their physical limits.

When the valve moves to its limits during a closed-loop transient, we say
that the valve saturates. Under these conditions, a sustained oscillation occurs,
which is called a limit cycle. The limit cycle that is caused by saturation is a
nonlinear phenomenon, which will be covered in Chap. 33 on nonlinear control.
If a limit cycle occurs, the gain that produces it and the period of the cycle should
not be used in the Ziegler-Nichols rules. Since the limit cycle will appear to the
observer to be the same as a sustained oscillation when the system is on the verge
of instability, the novice will often mistakenly use the information derived from
the limit cycle (controller gain and period) to obtain controller settings. A simple
way to know if one has a limit cycle is to observe the swing in pressure to the
valve. If the limits of the valve (e.g., 3 psi to 15 psi) are reached repeatedly
during the oscillatory response, one has a limit cycle and the controller gain and
period should not be used to determine controller settings. It is for this reason
step 2 states that K, should be increased in small steps until the response first
exhibits a sustained oscillation.

To appreciate the use of step 2 of the tuning method, one should have some
laboratory experience in tuning a real process, or at least a computer simulation
of a process. The experienced operator can develop some short cuts to finding the
ultimate gain and ultimate period.
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Cohen and Coon Rules (C-C)
The next method of tuning to be discussed is an open-loop method, in which the
control action is removed from the controller by placing it in manual mode and
an open-loop transient is induced by a step change in the signal to the valve.
This method was proposed by Cohen and Coon (1953) and is often used as an
alternative to the Z-N method. Figure 19.3 shows a typical control loop in which
the control action is removed and the loop opened for the purpose of introducing
a step change (M/s) to the valve. The step response is recorded at the output of
the measuring element. The step change to the valve is conveniently provided
by the output from the controller, which is in manual mode. The response of the
system (including the valve, process, and measuring element) is called the process
reaction curve; a typical process reaction curve exhibits an S-shape as shown in
Fig. 19.4. After presenting the Cohen and Coon method of tuning, the basis for
their recommendations will be discussed. The C-C method is summarized in the
following steps:

1. After the process reaches steady state at the normal level of operation, switch
the controller to manual. In a modem controller, the controller output will
remain at the same value after switching as it had before switching. (This is
called “bumpless” transfer.)

2. With the controller in manual, introduce a small step change in the controller
output that goes to the valve and record the transient, which is the process
reaction curve (Fig. 19.4).

3. Draw a straight line tangent to the curve at the point of inflection, as shown in
Fig. 19.4. The intersection of the tangent line with the time axis is the apparent
transport lag (Td);  the apparent first-order time constant (7) is obtained from

T  =  B,IS (19.4)

where B,  is the ultimate value of B at large t and S is the slope of the tangent
line. The steady-state gain that relates B to M in Fig. 19.3 is given by

K, = B,IM ( 1 9 . 5 )

MIS

+
R=O +!p  G,.  - l+J+i$-t

-

Loop opened

B

+
H

To recorder

FIGURE 19-3

J
c

Block diagram of a control loop for measurement of the process reaction curve.
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0
0 Td t

FIGURE 19-4
‘Ifrpical  process reaction curve show-

i n p u t ing graphical construction to deter-
mine first-order with transport lag

0 t model .

4. Using the values of K,, T, and Td  from step 3,  the controller settings are
found from the relations given in Table 19.2.

Notice in Table 19.2 that all of the controller settings are a function of the
dimensionless group Td/T,  the ratio of the apparent transport lag to the apparent
time constant. Also K, is inversely proportional to K,.

TABLE 19.2
Cohen-Coon controller settings

Qpe of control Parameter setting

Proportional (P)

Proportional-integral (PI)

Proportional-derivative (PD)

Proportional-integral-derivative (PID)

71  = Td 30+ 3TdfT
9+2OTd/T

70 = Td
6 -2TJT
22+ 3Td/T

71  = Td 32+6Td/T
13 +&'-d/T

TD = T,
4

11 + Z?Td/T
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The rationale for the C-C tuning method begins with the representation of
the S-shaped process reaction curve by a first-order with transport lag model; thus

(19.6)

Using the system expressed by Eq. (19.6)) Cohen and Coon obtained by theoretical
means the controller settings given in Table 19.2. Their computations required that
the response have $ decay ratio, minimum offset, minimum area under the load-
response curve, and other favorable properties.

In applying the C-C tuning method, an important task is the graphical con-
struction, shown in Fig. 19.4, which reduces the process reaction curve to the
first-order with the transport lag model given by Eq. (19.6). To understand the
basis for the graphical procedure, consider the response of the transfer function
of Eq. (19.6) to a step change in input; the resulting transient is shown in Fig.
19.5. After t = Td,  the response is a first-order response. The point of inflection
of the curve in Fig. 19.5 occurs at t = Td and the slope of the tangent line at
this point is related to the time constant by the relation:

S  =  B,IT

Solving for T gives the expression in Eq. (19.4). The response after t = Td,
shown in Fig. 19.5, was also presented in Fig. 5.6.

The attempt to model the process reaction curve by the method shown in
Fig. 19.4 is crude and does not give a very good fit. Finding the point of inflection
and drawing a tangent line at this point is quite difficult, especially if the data for
the process reaction curve are not accurate and if they scatter. A better method
for fitting the process reaction curve to a first-order with transport lag model is
to perform a least-square fit of the data. The disadvantage to this fitting proce-
dure is the time and effort required. An example to be presented later will study
the effect of the type of model fitting procedure on the selection of controller
parameters.f&--m---- ------_.

Q
P

Tangen t  l i ne ,  s lope  =  !$

L I
‘0  Td c

FIGURE 19-5
Step response for a first-order with transport lag

C model .
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More recently, Lopez et al. (1967) studied the tuning of controllers with
error-integral criteria for the first-order with transport lag model of Eq. (19.6).
The error-integral criteria that they considered were ISE, IAE, and ITAE. In their
work, a search procedure was used to find the controller parameters that minimized
each particular figure of merit. Their results, developed for Td/T  varying from 0 to
1.0, were presented in graphical form and as empirical equations that were fitted
to their graphical results. Their results, which can be considered as a variation of
the C-C tuning method, were not compared with the C-C method. The interested
reader may wish to compare the method of Cohen and Coon and the method of
Lopez et al. as a project.

To illustrate the two methods of controller tuning just presented, the system
shown in Fig. 19.1 was simulated by use of a computer program called TUTSIM.
(This simulation software is described in Chap. 35.) Table 19.3 gives the values
of the controller parameters obtained by applying each tuning method; Figure 19.6
shows the resulting transients. Since the Z-N method does not give a rule for a
PD controller, the settings listed for a PD controller udder the Z-N heading of
Table 19.3 were obtained by using a theoretical frequency response calculation in
which the design was based on 30’  phase margin and a maximum K,. No general
conclusions can be made about the relative merits of the two tuning methods from
the results shown in Fig. 19.6, since these results apply to one specific example.
About all that can be said is that for this specific example, both methods give
reasonable first guesses of the control parameters.

Example 19.1. For the control system shown in Fig. 19.7, determine controller
settings for a PI controller using the Z-N method and the C-C method. This problem
will be instructive because the transfer function of the model is already in the form
of first-order with transport lag, which is the form used by Cohen and Coon to derive
their tuning rules.

C-C method. Since the transfer function of the plant is in the form of Eq. (19.6),
we obtain T and Td immediately without having to draw a tangent line through
the point of inflection, i.e., T = 1 and Td = 1. We also observe from the block

TABLE 19.3
Controller settings for the system of Fig. 19.1

Control
5Pe Parameter

Closed-loop method Open-loop method
(Z-N method) (C-C method)

P

P I

PD

PID

KC 6.4 8.1

KC 5.8 7.0

71 5.6 4.4

KC 11.4* 9.8

TD 1 .o* 0.43

KC 1 . 1 10.5
71 3.4 3.9
7D 1.6 0.59

* Obtained by design for 30” phase margin and maximum Kc.
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I IHiT  , , , , , Pr;porJion;  , ,

0 1 0 t 2 0
(a)

0 10 t 2 0
(cl

FIGURE 19-6

1 0

(b)

- O.lOB
0 10 20

(4

Comparison of load responses for the system of Fig. 19.1 using controller settings obtained by the
Ziegler-Nichols method (Z-N) and the Cohen and Coon method (C-C).

diagram that Kp = 1. Substituting these values into the appropriate equations of
Table 19.2 gives

Kc = &i,.,+  g) = ;jo.9+  &)= 0.983

and

30 + 3Td/T 30 + 3
71 = Td = - =

9+2OT,/T 9 + 20
1.14

Using these values for K, and 71, the step response shown in Fig. 19.8 was obtained
by simulation.

Z-N Method. Application of the Bode criterion from Chap. 17 gives the following
results

w co  = 2.03 or P, = 2dwco = 3.09
KCU = 2.26

R = u(t) e-' B C

FIGURE 19-7
Process for Example 19.1.
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0.50 FIGURE 19-8

o’ooOw
Response to unit step in set point for the system in Fig.

I 19.7 (Example 19 1). .

The details for obtaining these results will not be given here since this type calcula-
tion was covered in depth in Chap. 17. Applying the Z-N rules for PI control from
Table 19.1 gives:

and

K, =  0.45K,,  = (0.45)(2.26)  = 1.02

TI = PJ1.2 = 3.0911.2 = 2.58

The step response for these controller settings is shown in Fig. 19.8. The ISE value
for each response was calculated out to a sufficiently long time (10 units of time)
for the integral to converge; the results are as follows:

C-C response: ISE = 1.54 at t = 10

Z-N response: ISE = 1.49 at t = 10

Although the ISE values are nearly the same, the transient for the Z-N settings
is better than the transient for the C-C settings. The Z-N transient has much less
overshoot. The lesson to be learned from this example is that the comparison of
two transients based on only one criterion (in this case, the ISE) may be mislead-
ing in the selection of the best transient. It is also important to judge the quality
of a transient by its actual appearance. It should be noted that for this example,
in which there is a relatively large transport lag (Td = l), much of the con-
tribution to the ISE occurs from f = 0 to t = 1, during which time the ISE
reaches 1.0. This value of the ISE at t = 1 is the same, regardless of the tuning
method used because the transport lag causes error to be constant from t = 0 to
t = 1.

Example 19.2. For the control system shown in Fig. 19.9, determine the controller
settings for a PI controller using the Z-N method and the C-C method. In this
problem, the  process reaction curve must be modeled by the method shown in Fig.
19.4.

C-C method. Since the transfer function of the plant is given as l/(s + 1)4,  we can
obtain the value of 7’d  and T for use in the C-C method analytically. A unit-step
response for the plant transfer function is

c(t) = 1-
l
13 12-6t + Zt  + t + 1 eWr

1
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R=O
1

tS+1)4
c

I

FIGURE 19-9
Process for Example 19.2.

From this result one can readily obtain the first and second derivatives; thus

k(t)  = $3,~t
6

r(t) = +-73t2  - t3)

The location of the inflection point on the transient c(t) is obtained by setting
the second derivative to zero:

0 = je-‘(3t2  - t3>

Solving for t gives as the root of interest in this problem t = 3. Knowing that the
point of inflection occurs at t = 3, we can compute the slope of the tangent line
through this point to be

S = >(3)  = ;(3)3,-3  = 0.224

We can now determine Td as shown in Fig. 19.10. From the expression for
c(t), we obtain the value of c at the inflection point to be ~(3)  = 0.353. The
value of t where the tangent line intersects the t-axis is obtained from the slope S,
thus

0 .353  - 0
3 - T,

= S = 0.224

solving for Td gives
Td = 1.42

Solving for T from Eq. (19.4) gives

T = B,IS = UO.224  = 4.46

Having found Td and T, we can apply the appropriate equations from Table
19.2 to get

K, = 2.91 rl = 2.86

The transient for these settings that was obtained by simulation is shown as curve
C-Cl in Fig. 19.11. To our surprise, it is unstable.

Z-N method. When we apply the Z-N method for a PI controller, we obtain the
following results: K,, = 4, P, = 2rr, K,  = 1.8, and rt = 5.23.
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FIGURE 19-10
Process reaction
19.2.

curve for Example

The transient for this set of controller parameters is also shown in Fig. 19.11.
We see that the response is stable and well damped.

The lesson learned in this example is that the application of a tuning method
may not produce a satisfactory transient. Fine tuning of these first guesses is usually
needed.

Before abandoning the C-C method for this example, the process reaction
curve was fitted to a first-order with transport lag model by means of a least square
fitting procedure. Applying the least square fit procedure out to t = 5 produced the
following results

Td = 1.5 and T = 3.0

Applying the C-C method for these values of Td and T gives

K, = 2.05 and q = 2.49

Notice that the value of K, is now considerably less than the value obtained
from the fitting procedure shown in Fig. 19.10. This leads to the expectation that
the response will now be stable. This expectation is fulfilled as shown by the transient
labeled C-C2 in Fig. 19.11.

c

0.80 c Z;N C;Cl

0.60
0.40
0.20
0.00

- 0.20
- 0.40

-- 0.60 \
-- 0.80

- 1.00 I I I I I,  I I I I
0 1 5 t 3 0

FIGURE 19-11
Comparison of transients produced by
different tuning methods for Example
19.2 (process shown in Fig. 19.9).
Z-N: Ziegler-Nichols method; C-Cl:
Cohen-Coon method based on tangent
line through point of inflection; C-C2:
Cohen-Coon method using model based
on least square fit.



296 PROCESS APPLICATIONS

PROCESS IDENTIFICATION
Up to this point, the processes used in our control systems have been described by
transfer functions that were derived by applying fundamental principles of physics
and chemical engineering (e.g., Newton’s law, material balance, heat transfer, fluid
mechanics, reaction kinetics, etc.) to well defined processes. In practice, many
of the industrial processes to be controlled are too complex to be described by
the application of fundamental principles. Either the task requires too much time
and effort or the fundamentals of the process are not understood. By means of
experimental tests, one can identify the dynamical nature of such processes and
from the results obtain a process model which is at least satisfactory for use
in designing control systems. The experimental determination of the dynamic
behavior of a process is called process ident@cation.

The need for process models arises in many control applications, as we have
seen in the use of tuning methods. Process models are also needed in developing
feedforward control algorithms, self-tuning algorithms, and internal model con-
trol algorithms. Some of these advanced control strategies were discussed in the
previous chapter.

Process identification provides several forms that are useful in process con-
trol; some of these forms are

Process reaction curve (obtained by step input)
Frequency response diagram (obtained by sinusoidal input)
Pulse response (obtained by pulse input)

We have already encountered the need for process identification in applying the
tuning methods presented earlier in this chapter. In the case of the Z-N method, the
procedure obtained one point on the open-loop frequency response diagram when
the ultimate gain was found. (This point corresponds to a phase angle of - 180’
and a process gain of l/K,, at the cross-over frequency w,,.)  In the case of the
C-C method, the process identification took the form of the process reaction curve.

Step Testing
As already described in the application of the Z-N tuning method, a step change
in the input to a process produces a response, which is called the process reaction
curve. For many processes in the chemical industry, the process reaction curve
is an S-shaped curve as shown in Fig. 19.4. It is important that no disturbances
other than the test step enter the system during the test, otherwise the transient
will be corrupted by these uncontrolled disturbances and will be unsuitable for
use in deriving a process model. For systems that produce an S-shaped process
reaction curve, a general model that can be fitted to the transient is the following
second-order with transport lag model:

G,(s) =
K e-TdS

P Y(s)=-
(TIS  + l)(T2s  + 1) X(s)

(19.7)
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This model is an extension of the one used in the C-C tuning method, in which
there was only one first-order term.

We shall now describe a graphical procedure for obtaining the transfer func-
tion of Eq. (19.7) from a process reaction curve.

SEMI-LOG PLOT FOR MODELING. The transfer function given by Eq. (19.7)
can be obtained from a process reaction curve by a graphical method in which
the logarithm of the incomplete response is plotted against time. In principle, this
method can extract from the process reaction curve the two time constants in Eq.
(19.7). The method, referred to as the semi-log plot method, is outlined below.
The method applies for Ti  > T2.

1. Determine (if transport lag is present) the time at which the process reaction
curve of Fig. 19.12 first departs from the time axis; this time is taken as the
transport lag Td  .

2. From the process reaction curve of Fig. 19.12, plot I versus t 1  on semi-log
paper as shown in Fig. 19.13 where Z is the fractional incomplete response
and tl  is the shifted time starting at Td (i.e., t 1  = t - Td). I is defined by

where B, is the ultimate value of Y.
3. Extend a tangent line through the data points at large values of f 1 (see Fig.

19.13). Refer to this tangent line as I,  and let the intersection of the tangent
line with the vertical axis at t 1  = 0 be called Z?

4. To find the time constant T1 , read from the graph in Fig. 19.13 the time at
which I,  = 0.368P. This time is TI.

5. Plot A versus t i where A = I, - I. If the data points (A, t i) fall on a
straight line, the system can be modeled as a second-order transfer function

Bu t
--__-- -----

T----Y

IorF I G U R E  1 9 - 1 2
Process reaction curve used in the semi-log plot method

t of modeling.
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t1
T2 TI (a r i thmet i c  sca le )

FIGURE 19-13
Graphical construction for use in modeling
semi-log plot method.

by

with transport lag as given by Eq. (19.7) with time constants T1  and T2.  The
value of -Tz  is the time at which A = 0.368R  where R is the intersection of
the line A with the vertical axis at t i = 0.

If one does not get a straight line when A is plotted against t i, the
procedure can be extended to get more first-order time constants, T3,  T4,  and
so on; however, the data must be very accurate for this method to be successful
in identifying more than two time constants. Usually the data scatter, especially
at large values of time, and one must be satisfied in drawing straight lines
through the scattered points.

6. The process gain is simply
Kp  = B,IM

PROOF OF SEMI-LOG METHOD. By shifting the time axis from t to t i in Fig.
19.12 we have accounted for the effect of Td  in Eq. (19.7) and the transient to
be considered (Y vs. t 1) is described by the transfer function

Gp(s)  = KP Y(s)=-
(Tls + 1)(T2s + 1) X(s)

Introducing X = MIS and K, = B,/M  into Eq. (19.8) gives

Y(s) 1- =
BU s(Tls  + 1)(T2s + 1)

The time response of this expression is given by

Y
- = l-

Bu

-tllT1  _  $t,IT2

TI

(19.8)

(19.9)

(19.10)

This result was also given in Eq. (7.10). Letting I = (B, - Y)/B,  as was done
in step 2, we obtain from Eq. (19.10)

TI
I  =  -e-tIlTI  - T2

TI  - T2
pe-W2

T1  - T2
(19.11)
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Assume that Ti  > T2.  As t i approaches 03, the second term on the right side of
Eq. (19.11) becomes much smaller than the first term and we can write as an
approximation to Eq. (19.11) for large t 1

1, = T1pe-‘dTl - pe--tilTi
-Tl - T2

(19.12)

where the term I,  is the approximation of I at large values of time and P is the
value of I,  at tl  = 0.

When tIlTI  = 1, or tl  = T1,  we obtain from Eq. (19.12)

I, = Pe-’ = 0.368P (19.13)

This proves step 4 of the graphical procedure. Now let A = I,  - I. From Eqs.
(19.11) and (19.12) we obtain

A=-.?& -tllT2  - Re-t’IT2

-T1 - T2
(19.14)

This relation plots as a straight line on semi-log paper.
When tllT2  = 1, or tl  = T2, we obtain from Eq. (19.14)

A = Re-’  = 0.368R

This proves Step 5.
To appreciate the nature of this graphical construction, the reader is encour-

aged to solve the problems requiring its use at the end of the chapter.

Fkequency  Testing
We have shown in the section on frequency response that a process having a
transfer function G(s) can be represented by a frequency response diagram (or
Bode plot) by taking the magnitude and phase angle of G(jo).  This procedure
can be reversed to obtain G(s) from an experimentally determined frequency re-
sponse diagram. The procedure requires that a device be available to produce a
sinusoidal signal over a range of frequencies. We describe such a device as a
sine wave generator. In frequency testing of an industrial process, a sinusoidal
variation in pressure is applied to the top of the control valve so that the ma-
nipulated variable can be varied sinusoidally over a range of frequencies. The
block diagram that applies during frequency testing is the same as the one of
Fig. 19.3 with the step input (M/s) replaced by a sinusoidal signal. The sine
wave generator used to test electronic devices operates at frequencies that are too
high for many slow moving chemical processes. For frequency testing of chem-
ical processes, special low-frequency generators must be built that can produce
a sinusoidal variation in pressure to a control valve. To preserve the sinusoidal
signal in the flow of manipulated variable through the valve, the valve must be
linear.

In the 1960s when frequency response methods were first introduced to
chemical engineers as a means for process identification, several chemical and
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petroleum companies constructed mobile units containing low-frequency sine wave
generators and recorders that could be moved to processing units in a plant for
the purpose of frequency testing.

The great disadvantage of frequency testing is that it takes a long time to
collect frequency response data over a range of frequencies that can be used
to construct frequency response plots. The time is especially long for chemical
processes, often having long time constants measured in minutes or even hours.
The frequency test at a given frequency must last long enough to make sure
that the transients have disappeared and only the ultimate periodic response is
represented by the data. Frequency testing usually ties up plant equipment too
long to be recommended as a means of process identification. Step testing and
pulse testing take much less time and can usually provide satisfactory process
identification.

Pulse Rsting

Pulse testing is similar to step testing; the only difference in the experimental
procedure is that a pulse disturbance is used in place of a step disturbance. The
pulse is introduced as a variation in valve top pressure as was done for step testing
(see Fig. 19.3). In applying the pulse, the open-loop system is allowed to reach
steady state, after which the valve top pressure is displaced from its steady-sqte
value for a short time and then returned to its original value. The response is
recorded at the output of the measuring element (B in Fig. 19.3). An arbitrary
pulse and a typical response are shown in Fig. 19.14. Usually the pulse shape
is rectangular in experimental work, but other well defined shapes are also used.

The input-output data obtained in a pulse test are converted to a frequency
response diagram, which can be used to tune a controller. The transfer function
of the valve, process, and measuring element (referred to as the process transfer
function, for convenience) is given by:

where Y(s) = Laplace  transform of the function representing the recorded output
response

X(s) = Laplace  transform of the function representing the pulse input

Applying the definition of the Laplace  transform [Eq. (2. l)] to the numerator and
denominator of Eq. (19.15) and replacing s by jo gives

t t
FIGURE 19-14
l)pical  process response to a pulse input.
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or

(19.16)

~emY(t)cosot dt - j \emY(t)sinwt dt

Gp(jO)  = jtX(t)cosmt  dt - j j,“X(t)sinot  dt
(19.17)

Reducing the input-output data of Fig. 19.14 to an expression for Gp(jW)  by
means of Eq. (19.17) is a difficult, tedious task that has been described in the
literature [Hougen (1964); Smith and Corripio (1985)].  The integration is done
numerically: the time axis is divided into equal increments and the function Y(t)
is represented linearly over successive time increments. A computer is necessary
to evaluate the integrals. Since the input-output variables (X and Y) are deviation
variables that return to zero as t progresses, the integrals in Fq.  (19.17) converge.
If the input is a rectangular pulse, the integral in the denominator of Eq. (19.16)
can be determined analytically. After the integrals in Eq.  (19.17) are evaluated
for several values of w,  Gp(jw) for each value of o can be expressed as

Gp(j@)  =
A + jB
-=a+jp
C + jD

The magnitude and angle of cy  + jp can be found easily and used in plotting a
frequency response diagram.

This brief outline describing pulse testing may appear deceptively simple.
In practice, the data on the response must be very accurate and noise-free in or-
der for the method to succeed. This means that the recorder used to measure the
response must be very sensitive. The selection of the pulse height and width is
also critical. If the pulse height and width am  too small, the disturbance to the
system will be too small to produce a transient that can be measured accurately by
the recorder. If the pulse height is too large, the system may be operating too far
from the linear range of interest. Obtaining the proper pulse height and width can
be determined by some preliminary open-loop experiments. The pulse test is the
least disruptive to plant operation among the process identification methods we
have considered. The pulse disturbance does not cause the process output to depart
far from its normal operating point. Also, the length of time that the process is
tied up for an open-loop test is short compared to the frequency response method.

S U M M A R Y

In the practical application of process control, some methods for tuning and pro-
cess identification are needed. The selection of controller modes depends on the
process to be controlled. Proportional control is simple, but the response ex-
hibits offset. The derivative action in PD control makes it possible to increase the
controller gain with the result that the response has less offset and responds more
quickly compared to proportional control. To eliminate offset, integral action must
be present in the controller in the form of PI and PID control. PI control often
causes the response to have large overshoot and a slow return to the set point
especially for high-order processes. The presence of derivative action in a PID
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controller gives less overshoot and a faster return to the set point, compared to
the response for PI control.

To compare the quality of control on a numerical basis, several criteria that
integrate some function of the error with respect to time have been proposed.
These include the integral of the square of the error (BE),  the integral of the
absolute error (WE), and the integral of the time-weighted absolute error (ITAE).

In the first part of this chapter two well known tuning methods are presented:
the Ziegler-Nichols (Z-N) method (a closed-loop method) and the Cohen-Coon
(C-C) method (an open-loop method). These two methods were applied to several
examples and the transients for each compared. The lesson to be learned through
these examples is that the controller parameters obtained from a tuning rule should
be considered as first guesses; fine on-line tuning is usually needed to get a
satisfactory transient.

The Z-N and C-C methods actually require information about the process
model. The Z-N method is based on the ultimate gain at the crossover frequency,
which is equivalent to knowing one point on the open-loop frequency response
diagram. The C-C method requires the use of an open-loop step response (process
reaction curve).

In the advanced control strategies discussed in Chap. 18, a process model
is often needed to apply the strategy. When a process model cannot be found by
application of theoretical principles, one must obtain a model experimentally. The
experimental approach to obtaining a model is called process identification. The
three methods of process identification discussed in this chapter are step testing,
frequency testing, and pulse testing. The frequency method is seldom used because
of the time it takes to test a system over a wide range of frequencies. Step testing is
easy to apply and ties the process up for only enough time to obtain one transient.
Pulse testing is also simple to apply, but the analysis of the input-output data
require extensive calculations that must be done by a computer.

PROBLEMS
19.1. Use the semi-log graphical method to determine the process model for the following

unit-step response data:

t ime.  t response. Y

0 0
0.25 0 . 0 7
0 . 5 0 0 . 2 0
0.75 0 . 3 4
1.00 0 . 4 7
1.25 0 . 5 7
1.50 0 . 6 6
2.00 0 . 7 9
2.50 0.87
3.00 0 . 9 2
3.50 0 . 9 4
4 . 0 0 0 . 9 6

m 1.00



CHAPTER

20
CONTROL '
VALVES

One of the basic components of any control system is the final control element,
which comes in a variety of forms depending on the specific control application.
The most common type of final control element in chemical processing is the pneu-
matic control valve, which regulates the flow of fluids. Some other types include
the variable speed pump and the power controller (used in electrical heating).

Since the pneumatic control valve is so widely used in chemical processing,
this chapter will be devoted to the description, selection, and sizing of control
valves.

CONTROL VALVE CONSTRUCTION
The control valve is essentially a variable resistance to the flow of a fluid, in
which the resistance and therefore the flow, can be changed by a signal from a
process controller.

As shown in Fig. 20.1, the control valve consists of an actuator and a
valve. The valve itself is divided into the body and the trim. The body consists of
a housing for mounting the actuator and connections for attachment of the valve
to a supply line and a delivery line. The trim, which is enclosed within the body,
consists of a plug, a valve seat, and a valve stem. The actuator moves the valve
stem as the pressure on a spring-loaded diaphragm changes. The stem moves a
plug in a valve seat in order to change the resistance to flow through the valve.
When a valve is supplied by the manufacturer, the actuator and the valve are
attached to each other to form one unit.

303
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Air signal
7

Plug

FlGURE  20-1
Pressure-to-close valve with single
ing.

seat-

For most actuators, the motion of the stem is proportional to the pressure ap-
plied on the diaphragm. In general, this type of actuator can be used for functions
other than moving a valve stem. For example, it can be used-to adjust dampers,
variable speed drives, rheostats, and other devices. As the pressure to the valve
varies over its normal range of operation (3 to 15 psig) the range of motion of
the stem varies from a fraction of an inch to several inches depending on the
size of the actuator. Manufacturers provide a range of actuators for various valve
sizes.

The valves available vary over a wide range of sizes. The size is usually
referred to by the size of the end connectors. For example, a one-inch valve would
have connectors (threaded or flanged) to fit into a one-inch pipe line. In general,
the larger the valve size the larger the flow capacity of the valve.

For the control valve shown in Fig. 20.1, an increase in signal pressure above
the diaphragm exerts a force on the diaphragm and back plate, which causes the
stem to move down; this causes the cross-sectional area for flow between the
plug and the seat to decrease, thereby reducing or throttling the flow. Such valve
action as shown in Fig. 20.1 is called pressure-to-close action. The reverse action,
pressure-to-open, can be accomplished by designing the actuator so that pressure is
applied to the under side of the diaphragm, for which case an increase in pressure
to the valve raises the stem. An alternate method to reverse the valve action is to
leave the actuator as shown in Fig. 20.1 and to invert the plug on the stem and
place it under the valve seat.

The valve shown in Fig. 20.1 is single-seated, meaning the valve contains
one plug with one seating surface. For a single-seated valve, the plug must open
against the full pressure drop across the valve. If the pressure drop is large, this
means that a larger, more expensive actuator will be needed. To overcome this
problem, valves are also constructed with double seating as shown in Fig. 20.2.
In this type valve, two plugs are attached to the valve stem and each one has
a seat. The flow pattern through the valve is designed so that the pressure drop
across the seat at A tends to open the plug and the pressure drop across the seat
at B tends to close the plug. This counterbalancing of forces on the plugs reduces
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FIGURE 20-2
Double-seated valve.

the effort needed to open the valve with the result that a smaller, less expensive
actuator is needed.

In a double-seated valve, it is difficult to have tight shut-off. If one plug
has tight closure, there is usually a small gap between the other plug and its seat.
For this reason, single-seated valves are recommended if the valve is requited to
be shut tight. In many processes, the valve is used for throttling flow and is never
expected to operate near its shut-off position. For these conditions, the fact that
the valve has a small leakage at shut-off position does not create a problem.

VALVE SIZING
In order to specify the size of a valve in terms of its capacity to provide flow
when fully open, the following equation is used:

where q = flow rate, gpm
Ap, = pressure drop across the wide-open valve, psi

G = specific gravity of fluid at stream temperature relative to water; for
water G = 1.

C, = factor associated with capacity of valve

Equation (20.1) applies to the flow of an incompressible fluid through a
fully open valve. Manufacturers rate the size of a valve in terms of the factor C,.
Sometimes the C, is defined as the flow (gpm) of a fluid of unit specific gravity
through a fully open valve, across which a pressure drop of 1 .O lbf/in2  exists. This
verbal definition is, of course, obtained directly from Eq. (20.1) by letting q = 1,
Ap, = 1, and G = 1. Equation (20.1) is based on the well-known Bernoulli
equation for determining the pressure drop across valves and resistances. It is
important to emphasize that C, must be determined from Eq. (20.1) using the
units listed. Since so many valves in use are rated in terms of C,, Eq.  (20.1)
is of practical importance; however, some industries now are defining a valve
coefficient K, that is defined by the equation
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where 4 = flow rate, m3/hr
Ap, = pressure drop across valve, Kg&m2

G = specific gravity relative to water

The relation between K, and C, is:

K, = 0.856C,
For gases and steam, modified versions of Eq. (20.1) are used in which C,

is still used as a factor. Manufacturers of valves provide brochures, nomographs,
and special slide rules for sizing valves for use with gases and steam.

In general, as the physical size of a valve body (i.e., size of pipe connectors)
increases, the value of C, increases. For a sliding stem and plug type of control
valve, the value of C, is roughly equal to the square of the pipe size multiplied
by ten. Using this rule, a three-inch control valve should have a C, of about 90,
with units corresponding to those of Eq. (20.1).

Example 20.1. A valve with a C, rating of 4.0 is used to throttle the flow of
glycerine for which G = 1.26. Determine the maximum flow through the valve for
a pressure drop of 100 psi.

The coefficient C, varies with the design of the valve (shape, size, rough-
ness) and the Reynolds number for the flow through the valve. This relationship is
analogous to the relationship between friction factor and roughness and Reynolds
number for flow through a pipe. For relatively nonviscous fluids, C, in Eq. (20.1)
can be taken as a constant for a valve of given size and type. The reason for this
is that at high Reynolds numbers, the friction factor changes very little with flow
rate. Except for very viscous fluids, the flow through a valve, which involves
sudden contraction and expansion, is in the turbulent regime of fluid flow; turbu-
lence in the valve exists even if the flow in the supply pipe is near the critical
Reynolds number of 2 100.

Consequently, for relatively nonviscous fluids, Eq. (20.1) is satisfactory for
sizing a valve for any fluid. For the control of flow of very viscous fluids, such
as tar or molasses, the value of C, found from Eq.  (20.1) must be multiplied by
a correction factor that depends on viscosity, density, flow rate, and valve size
(i.e., on the Reynolds number). Methods for determining the viscosity correction
factor are provided by manufacturers for their valves. If one does not apply the
correction factor for a very viscous fluid, the value of C, will be too low and the
valve will be undersized.

VALVE CHARACTERISTICS

The function of a control valve is to vary the flow of fluid through the valve
by means of a change of pressure to the valve top. The relation between the
flow through the valve and the valve stem position (or lift) is called the valve
characteristic, which can be conveniently described by means of a graph as shown
in Fig. 20.3 where three types of characteristics are illustrated.
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F X,  f rac t ion  o f  max imum l i f t

FIGURE 20-3
Inherent valve  characteristics (pressure drop across valve  is con-
stant) I linear, II incmasing  sensitivity (e.g. equal  percentage
valve), III decreasing sensitivity.

In general, the flow through a control valve for a specific fluid at a given
temperature can be expressed as:

4  =  fl&POtPl) (20.2)
where q = volumetric flow rate

L = valve stem position (or lift)
po = upstream pressure
pt = downstream pressure

The inherent valve characteristic is determined for fixed values of pa and p 1,  for
which case, Eq. (20.2) becomes

4  =  f2W> (20.3)
For convenience let:

m  = dqmax and x = LIL,,
where qmax  is the maximum flow when the valve stem is at its maximum lift

L,,  (valve is full-open)
x is the fraction of maximum lift
m is the fraction of maximum flow.

Equation (20.3) may now be written

m  = 4hmax = f(L~Lnlax)
or

m  = f(x) (20.4)
The types of valve characteristics can be defined in terms of the sensitivity of

the valve, which is simply the fractional change in flow to the fractional change
in stem position for fixed upstream and downstream pressures; mathematically,
sensitivity may be written

sensitivity = dmldx

In terms of valve characteristics, valves can be divided into three types:
decreasing sensitivity, linear, and increasing sensitivity. These types are shown
in Fig. 20.3 where the fractional flow m is plotted against fractional lift x . For
the decreasing sensitivity type, the sensitivity (or slope) decreases with m . For the
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linear type, the sensitivity is constant and the characteristic curve is a straight
line. For the increasing sensitivity type, the sensitivity increases with flow.

Valve characteristic curves, such as the ones shown in Fig. 20.3, can be
obtained experimentally for any valve by measuring the flow through the valve
as a function of lift (or valve-top pressure) under conditions of constant upstream
and downstream pressures. ‘Ikro  types of valves that are widely used are the linear
valve and the logarithmic (or equal percentage) valve. The linear valve is one for
which the sensitivity is constant and the relation between flow and lift is linear.
The equal percentage valve is of the increasing sensitivity type.

It is useful to derive mathematical expressions for these types of valves. For
the linear valve,

where Q is a constant.

dmldx = a (20.5)

Assuming that the valve is shut tight when the lift is at lowest position, we
have that m = 0 at x = 0. For a single-seated valve that is not badly worn, the
valve can be shut off for x = 0. Integrating Eq. (20.5) and introducing the limits
m = 0 at x = 0 and m = 1 at x = 1 gives

1

I,  I

1

dm = adx
0

Integrating this equation and inserting limits gives

a=1

Recall that the definitions of x and m require that m = 1 at x = 1. For CY = 1,
Eq. (20.5) can now be integrated to give

m = x (linear valve) (20.6)

For the equal percentage valve, the defining equation is

dmldx = pm (20.7)

where p is constant. Integration of this equation gives

or

(20.8)

where mo is the flow at x = 0. Equation (20.9) shows that a plot of m versus x
on semi-log paper gives a straight line. A convenient way to determine if a valve
is of the equal percentage type is to plot the flow versus lift on semi-log paper. The
relation expressed by Eq. (20.9) is the basis for calling the valve characteristic
logarithmic. The basis for calling the valve characteristic equal percentage can be
seen by rearranging Eq. (20.7) in the form

dmlm = /3dx or hmlm = @Ax
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In this form it can be seen that an equal fractional (or percentage) change in
flow (Am/m) occurs for a specified increment of change in stem position (Ax),
regardless of where the change in stem position occurs along the characteristic
curve.

The term /3 can be expressed in terms of ma by inserting m = 1 at x = 1
into Eq. (20.9). The result is

p = ln(llma)

Solving Eq. (20.9) for m gives

m = moe Px (equal percentage valve) (20.10)

In integrating Eq. (20.7),  the flow was assumed to be mo at x = 0. Mathe-
matically this is necessary, because mo cannot be taken as zero at x = 0 because
the term on the left side of Eq. (20.9) becomes infinite. In practice, there may
be some leakage (hence mo # 0) when the stem is at its lowest position for a
double-seated valve or for a valve in which the plug and seat have become worn.

For some valves, especially large ones, the valve manufacturer intentionally
allows some leakage at minimum lift (X = 0) to prevent binding and wearing of
the plug and seat surfaces. For a valve that does shut tight and is also classified as
an equal percentage valve, the equal percentage characteristic will not be followed
when the valve is nearly shut. In practice, the control valve serves as a throttling
valve and is not intended to be wide-open or completely closed during normal
operation.

In order to express the range over which an equal percentage valve will
follow the equal percentage characteristic, the term rangeability  is used. Range-
ability is defined as the ratio of maximum flow to minimum controllable flow over
which the valve characteristic is followed.

Rangeability = mmax
m  min, controllable

For example, if mo is 0.02, the rangeability is 50. It is not uncommon for a
control valve to have a rangeability as high as 50.

In practice, the ideal characteristics for linear and equal percentage valves are
only approximated by commercially available valves. These discrepancies cause
no difficulty because the inherent characteristics are changed considerably when
the valve is installed in a line having resistance to flow, a situation that usually
prevails in practice. In the next section, the effect of line loss on the effective
valve characteristic will be discussed.

Effective Valve Characteristic
When a valve is placed in a line that offers resistance to flow, the inherent charac-
teristic of the valve will be altered. The relation between flow and stem position
(or valve-top pressure) for a valve installed in a process line will be called the
effective valve characteristic.
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water  PO

FIGURE 20-4
Control valve with supply line.

Consider a control valve having an inherent linear characteristic to be at-
tached to the end of a pipeline that delivers water to an open tank. A diagram
of the system is shown in Fig. 20.4. If the pipe is of large diameter relative to
the size of the control valve, the pressure drop in the line will be negligible and
the full pressure drop pa - p1 will be across the valve as the lift varies between
zero and one. In this case a plot of flow versus lift will give a linear relation as
shown by Curve I of Fig. 20.5. This curve is for the flow of water at 5” C through
a control valve for which C, = 4.0 and the overall pressure drop, po - ~1,  is
100 psi. To show the effect of line loss, Curve II is constructed for the same
conditions as Curve I, with the exception that 100 ft of 1.0 in. (inside diameter)
pipe is used to supply the valve.

Example 20.2 will give the detailed calculations used to obtain the results
in Fig. 20.5. For 100 ft of pipe, the plot of flow versus lift gives Curve II, shown
in Fig. 20.5, in which the curve falls away or droops from the linear relation that
holds for no line loss. Since line loss is proportional to the square of the velocity,
the line loss is very small when the valve is nearly closed, for which case the
total pressure drop is across the valve. For this reason, Curves I and II in Fig.
20.5 are close together at low rates. A rule often followed in industrial application
of control valves is that the pressure drop across the wide-open valve should be
greater that 25 percent of the pressure drop across the closed valve. A valve not
selected according to this rule will lose its effectiveness to control at high flow
rates.

30-

FIGURE 20-5
Effect of line loss on effective control valve character-
istics from Example 20.2. I no pressure drop in supply

0.2 0.4 0.6 0.8 1.0 line to valve, II pressure drop present in supply line to
x, fraction lift valve.
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Example 20.2. Determine the flow versus lift relation for the linear control valve
installed in the flow system of Fig. 20.4. The fluid is water at 5” C. The following
data apply:

pipe length 1OOft
inside pipe diameter 1.0 in
density of water 62.4 lb/ft3
viscosity of water 1.5 cp
C, of control valve 4.0
total pressure drop, pu  - pr 100 psi

If there is no line loss as is the case for a large diameter line, the maximum
flow can be calculated from Eq. (20.1):

4 =CV&=4.0~=40.0gpm

To determine the flow/lift relation for the case of line loss, we arbitrarily start the
calculation with a flow of 30 gpm. The pressure drop in the 100 ft pipe can be
calculated from the well known expression from fluid mechanics:

Ap = =fLPq*
1447r2gcD5

(20.11)

where  Ap = pressure loss in line, psi
q = flow  through pipe, ft3/sec

g, = 32.174 (lbm/lbf)(ft/sec2)
L = pipe length, ft
p = density of fluid, lb,/ft3

D = inside pipe diameter, ft
f = fanning friction factor, dimensionless

The fanning friction factor is a function of the Reynolds number and the pipe
roughness. Equation (20.11) and a correlation for the fanning friction factor can be
found in the literature (Perry and Chilton, 1973). We now calculate the Reynolds
number (Re):

Re = Duplp

Replacing the velocity u with q/[(d4)D2] gives

q = 30/(60)(7.48) = 0.0668 ft31sec  or 240.6 ft3/hr

(20.12)

Re = (W4WW.4)
(7r)(1.50)(2.42)(1/12)  = 63’ 224
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For this value of Reynolds number and for smooth pipe, the fanning friction factor
f is 0.005. Equation (20.11) may now be used to calculate line loss:

Ap  = (32)(0.005>(l~)(62.4)(0.066~)2  = 24 2  psi
(144)(&)(32.2)(1/12)5  *

therefore Ap across valve = 100 - 24.2 = 75.8 psi

We next calculate the flow through the wide-open valve for a pressure drop of 75.8
psi:

g,,=C,&=4.0~=34.8gpm

Since the flow through the wide-open valve of 34.8 gpm at a pressure drop
across the valve of 75.8 psi is greater than the selected value of 30 gpm, which was
used to begin the calculation, we know the valve must be partially closed. Since the
valve is linear, we calculate the lift x as follows:

x = 30134.8 = 0.86

By means of similar calculations, several points on the effective characteristic curve
of Fig. 20.5 can be found; the results are summarized in Table 20.1. The results
shown in this table were used to obtain Curve II in Fig. 20.5.

Example 20.3. A control valve is to be installed in the flow system of Fig. 20.4.
The valve is supplied by water at 5°C through 200 ft of pipe having an inside
diameter of 1.0 in. The total pressure drop, po  - ~1,  is 100 psi. When the valve is
wide-open, the flow is to be 30 gpm. Determine C,  for the valve. Plot the effective
characteristic curve for the valve as flow versus lift. Do this problem for a linear
valve and for an equal percentage valve. The equal percentage valve has an mu of
0.03.

Linear Valve. To obtain the pressure drop in the line, use is made of Eqs. (20.11)
and (20.12) as was done in Example 20.2. From Eq. (20.12),  we obtain the Reynolds
number as follows:

q  = 30/(60)(7.48)  = 0.0668 ft3/sec  or 240.6 ft3/hr

TABLE 20.1
Effective characteristic for a linear valve with supply lie  loss
(Example 20.2).

4, am x, fraction lift Ap in line, psi

0 0 0
2 0 0.53 10.8
3 0 0 . 8 6 2 4 . 2
3 3 1.0 30.0
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From a correlation for the fanning friction factor, we obtain f = 0.005. From Eq.
(20.1 l)?, the line loss is calculated to be:

Ap  = (32)(0.005)(200)(62.4)(0.0668)*
(144)(~2)(32.2)(1/12)5

= 48Spsi

ApV  = 100 - 48.5 = 51.5psi

From knowledge of the maximum flow through the wide-open valve (30 gpm) and
Ap,,,  we calculate C,  from Eq.  (20.1) as follows:

= 4.18

From CV, one can now calculate the stem position n needed for various flow rates
m.

For q = 20 gpm, one obtains from Eq.  (20.11)

Ap = 21.6 psi

and

Apy  = 100 - 21.6 = 78.4 psi

For a wide-open valve (x = l), across which the pressure drop is 78.4 psi, we
obtain

q,,=CV,@=4.18E=37.0gpm

The fraction of lift needed to reduce the flow to 20 gpm is

x = 20137  = 0.54

For other flow rates, one can repeat this calculation to obtain values of x . The
results are shown in Table 20.2 and in Fig. 20.6. The latter also shows the inherent
characteristic of the linear valve for comparison with the effective characteristic of
the valve when line loss is present.

TABLE 20.2
Eff’ective  characteristics for a linear valve and an equal percentage valve
(Example 20.3).

Maximum Row of water at 5” C: 30 gpm
Pressure drop across flow system: 100 psi
pipe  length: 200 fi, Inside pipe diameter: 1.0 in.
C, = 4.18, mo = 0.03

4h
psi

x
Ihear

x
equal  percentage

0 100 0 *
1 0 94.6 0.25 0.60
20 78.5 0.54 0.82
30 51.4 1.00 1.00

* For the equal percentage valve, nzo  = 0.03 when x = 0.
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3 0

E 20
8& 10 FIGURE 20-6

valve  Comparison of effective valve characteristics of a linear
0 valve and an equal  percentage valve  from Example 20.3.
0 0.2 0.4 0.6 0.8 1.0 I ideal linear characteristic, II linear valve, III equal per-

x,  fraction lift centage  valve.

Equal percentage valve. Calculation of the effective characteristic will now be made
for an equal percentage valve having the same C,  of 4.18 as calculated for the linear
valve in the first part of this example.

For mg = 0.03, the value of /3 is calculated to be

/3 = ln(l/mo) = ln(U0.03) = 3.51

For a flow rate of 20 gpm,

m = q/q-  = 2Of37  = 0.54

Solving Eq.  (20.9) for x and inserting the values for p, mg,  -and  m give

n = (1/3.51)1n(0.54/0.03)  = 0.82

For other values of flow, corresponding values of n are  calculated and the results
are shown in Table 20.2 and Fig. 20.6.

BENEFIT OF AN EQUAL PERCENTAGE VALVE. It is often stated in the control
literature that the benefit derived from an equal percentage valve arises from its
inherent nonlinear characteristic that compensates for the line loss to give an
effective valve characteristic that is nearly linear. A study of Fig. 20.6 shows
that in this example an equal percentage valve overcompensates for line loss and
produces an effective characteristic that is not linear, but is bowed in the opposite
direction to that of the effective characteristic of the linear valve. In summary,
neither valve in this example produces an effective characteristic that is linear.
One can show that as the line loss increases, the linear valve will depart more from
the ideal linear relation and the equal percentage valve will move more closely
toward the linear relation.

In practice, a valve designated as linear will not give a linear characterisitic
exactly as defined in this chapter. To achieve a truly linear characteristic would
require very careful design and precision machining of the valve plug and seat.
The same comment can be made for an equal percentage valve, as defined by Eq.
(20.10). In order to know the effective characteristic of a valve, one must test it
experimentally.

VALVE POSITIONER
The friction in the packing and guiding surfaces of a control valve causes a con-
trol valve to exhibit hysteresis as shown in Fig. 20.7, in which stem position is
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FIGURE 20-7
Control valve hysteresis.
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plotted against valve-top pressure. When the pressure increases, the stem position
increases along the lower curve. When the pressure decreases, the stem position
decreases along the upper curve. At the moment the air pressure signal reverses,
the stem position stays in the last position until the dead band H is exceeded,
after which the pressure begins to decrease or increase along the paths shown by
the arrows. If the valve is subjected to a slow periodic variation in pressure, a
typical path taken by the stem position is shown by the closed curve ABCDA in
Fig. 20.7.

The hysteresis described in the previous paragraph should be distinguished
from the dynamic lag of a valve discussed in Chap. 10. The dynamic lag discussed
in Chap. 10 is caused by the volume of space above the valve diaphragm, the
resistance to flow of air to the valve top, and the inertia of the valve stem and
plug; such a lag is expressed by a first-order or second-order transfer function. On
the other hand, hysteresis, which is caused by the friction between the stem and
the packing, is a nonlinear phenomenon and cannot be expressed by a transfer
function. A valve can exhibit both dynamic lag and hysteresis.

The presence of hysteresis in the valve can cause the controlled signal to
exhibit an oscillation or ripple called a limit cycle. Since this limit cycle is usually
considered objectionable and contributes to wear of the valve, a method is needed
to eliminate it. Since the limit cycle is a nonlinear phenomenon related to the
hysteresis, controller tuning is not a solution to the problem.

To reduce the deleterious effect of hysteresis and to also speed up the re-
sponse of the valve, one can attach to the control valve a positioner which acts
as a high-gain proportional controller that receives a set-point signal from the
primary controller and a measurement from the valve stem position. In this sense,
the addition of a valve positioner introduces a form of cascade control, which
was discussed in a previous chapter. A sketch of a control valve with a positioner
attached is shown in Fig. 20.8. The positioner, bolted to the valve actuator, has
an arm that is clamped to the valve stem to detect the stem position.

Notice that the valve positioner shown in Fig. 20.8, has the usual connec-
tions for a controller: a set point that calls for a desired stem position in the
form of a signal from the primary controller pc, a measurement in the form of
stem position x, and a pneumatic output in the form of a pressure to the valve
top pv. The mechanical details of an actual valve positioner involve a pneumatic
mechanism functioning as a high-gain proportional controller. The gain is built
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Output  to valve,p,

Arm a t tached to  s tem
to sense valve position

FIGURE 20-8
Control valve with positioner (Compare with Fig. 20.1).

into the design of the positioner and cannot be adjusted. The valve positioner is
especially important for speeding up the valve motion, and eliminating hysteresis
and valve stem friction.

SUMMARY

The control valve is a component of a control system often overlooked in a
course on process control. In this chapter, the description, selection, and sizing of
pneumatic control valves were presented. Valves may be of the pressure-to-close
or the pressure-to-open type; the selection of the type is often related to safety
considerations. If the air pressure fails, the valve should return to a position which
ensures safe operating conditions for a process.

The flow capacity of a valve is based on an equation relating flow to the
square root of the pressure drop across the valve; the proportionality constant C,
in this equation is a measure of the valve’s capacity for flow. The larger Cv, then
the larger the flow.

Valves are classified according to their inherent flow characteristics such as
linear or equal percentage. A linear valve produces a flow (for constant pressure
drop across the valve) that is proportional to the valve stem position, which in
turn is proportional to the valve-top pressure.

The presence of a long, small-diameter line supplying a valve causes the
pressure drop across the valve to decrease with the increase of flow, for a fixed,
overall pressure drop across the system. If the pressure drop in the line is excessive,
the characteristic of the linear valve will become nonlinear and in terms of control
theory, the steady-state gain K, of the valve decreases with flow. As a result of the
change in valve gain, the controller in the loop must be readjusted for different
flow rates in order to maintain the same degree of stability. To overcome this lim-
itation of the linear valve, an equal percentage (or logarithmic) valve is available
for which the gain of the valve increases with flow rate. Such a valve compensates
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for the line loss and produces an effective charateristic  that approaches a linear
relation. The basis for the name equal percentage (or logarithmic) is related to
one form of the mathematical expression that describes the valve. In this form, an
equal percentage change in flow occurs for a specified change in stem position,
regardless of the stem position.

In order to eliminate hysteresis, which can produce cycling and cause wear
of the valve plug and seat, a valve positioner may be attached to a control valve.
The positioner also speeds up the motion of the valve in response  to a signal from
the controller.

PROBLEMS
20.1. A linear control valve having a CV  of 0.1 is connected to a source of water. If

the pressure drop across the valve is 400 psi and if the pneumatic pressure to the
valve top is 12 psig, what is the flow rate through the valve? The valve goes from
completely shut to completely open as the valve-top pressure varies from 3 to 15
psig.

20.2. (a) Under what conditions would an equal percentage valve be used instead of a
linear valve?

(b) What am  some reasons to use a valve positioner?
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In order to investigate theoretically the control of a process, it is necessary first to
know the dynamic character of the process that is being controlled. In the previous
chapters, the processes have been very simple for the purpose of illustrating con-
trol theory. Many physical processes are extremely complicated, and it requires
considerable effort to construct a mathematical model that will adequately simu-
late the dynamics of the actual system. In this chapter, we shall analyze several
complex systems to indicate some of the types of problems that can be encoun-
tered. In these examples, the technique of linearization, first presented in Chap.
6, will be applied to a function of several variables. One example will lead to a
multiloop control system. In the last section, distributed-parameter systems will
be discussed.

CONTROL OF A STEAM-JACKETED
KETTLE
The dynamic response and control of the steam-jacketed kettle shown in Fig. 21.1
are to be considered. The  system consists of a kettle through which water flows
at a variable rate w lb/time. The entering water is at temperature Ti,  which may
vary with time. The kettle water, which is well agitated, is heated by steam con-
densing in the jacket at temperature TV  and pressure pv. The temperature of the
water in the kettle is measured and transmitted to the controller. The output signal
from the controller is used to change the stem position of the valve, which adjusts
the flow of steam to the jacket. The major problem in this example is to determine
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FIGURE 21-1
C4mtml  of a steam-jacketed ke.ttle.

the dynamic characteristics of the kettle. The kettle is actually a nonlinear system,
and in order to obtain a linear model a number of simplifying assumptions are
needed.

Analysis of Kettle
The following assumptions are made for the kettle:

1. The heat loss to the atmosphere is negligible.
2. The holdup volume of water in the kettle is constant.
3. The thermal capacity of the kettle wall, which separates steam from water, is

negligible compared with that of the water in the kettle.
4. The thermal capacity of the outer jacket wall, adjacent to the surroundings,

is finite, and the temperature of this jacket wall is uniform and equal to the
steam temperature at any instant.

5. The kettle water is sufficiently agitated to result in a uniform temperature.
6. The flow of heat from the steam to the water in the kettle is described by the

expression
4 = U(Z’,  - To)

where q = flow rate of heat, Btu/(hr)(ft2)
U = overall heat-transfer coefficient, Btu/(hr)(ft2)(“F)
TlJ = steam temperature, T
To  = water temperature, “I?

The overall heat-transfer coefficient U is constant,
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7. The heat capacities of water and the metal wall am  constant.
8. The density of water is constant.
9. The steam in the jacket is saturated.

The assumptions listed hem am  mote or less arbitrary. For a specific kettle oper-
ating under a particular set of conditions, some of these assumptions may require
modification.

The approach to this problem is to make an energy balance on the water side
and another energy balance on the steam side. In order to aid the development of
the transfer functions, a schematic diagram of the kettle is shown in Fig. 21.2.
The symbols used throughout this analysis am  defined as follows:

Ti  =
To  =
TV  =
T, =
W=

w, =
w, =
m =
ml =
v =

c =
Cl =

A =
t =

H, =
H, =
u, =
Pv  =

temperature of inlet water, T

temperature of outlet water, “F
temperature of jacket steam, “F

temperature of condensate, T
flow rate of inlet water, lb/time
flow rate of steam, lb/time

flow rate of condensate from kettle, lb/time

mass of water in kettle, lb
mass of jacket wall, lb
volume of jacket steam space, ft3

heat capacity of water, Btu/(lb)(“F)
heat capacity of metal in jacket wall, Btu/(lb)(T)

cross-sectional area  for heat exchange, ft2

time
specific enthalpy of steam entering, BtuAb
specific enthalpy of condensate leaving, BtuAb

specific internal energy of steam in jacket, BtuAb
density of steam in jacket, lb/ft3

FlGURE  213
Schematic diagram of kettle.
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An energy balance on the water side gives

wC(Ti - To) + UA(T,  - To) = rnC% (21.1)

InEq.(21.1),thetermsC,U,A,andmareconstants.ThefirstterminEq.(21.1)
is nonlinear, since it contains the product of flow rate and temperature, that is, wTi
and w To. In order to obtain a transfer function from Eq. (21. l), these nonlinear
terms must be linearized. Before continuing the analysis, we shall digress briefly
to discuss the general problem of linearization of a function of several variables.

Consider a function of two variables, z(x,y).  By means of a Taylor series
expansion, the function can be expanded* around an operating point x S,yS  as
follows:

z = Z(XstYs)  + g IX& (x  - x,)  + 2 lx,.y, (Y - Ys) (21.2)
+ higher-order terms in (X - x,)  and (y - yS)

The subscript s stands for steady state.
In control problems, the operating point (x s,ys),  around which the expan-

sion is to be made, is selected at steady-state values of the variables before any
disturbance occurs. Linearization of the function z consists of retaining only the
linear terms, on the basis that the deviations (x - x J,  etc., will be small. Thus,

z = zs + z&$(x - x,)  + Z,,(Y - Ys) (21.3)

where znS  and zY, are the partial derivatives in Eq. (21.2). If z is a function of
three or more variables, the linearized form is the same as that of Eq. (21.3) with
an additional term for each variable.

The linearization expressed by Eq. (21.3) may be applied to the terms WTi
and wT,,  in Eq. (21.1) to obtain

and
wT~  = wsTis  + w,(Ti - Ti,)  + Ti,(W  - W,) (21.4)

wTo  = wsTos + w,(To - To,) + To,(w - ws) (21.5)

Notice that for these cases the nonlinear terms are wT;  and wT,. The first partial
derivatives, evaluated at the operating point, are

and so on.

*The reader may refer to I. S. Sokolnikoff and R. M. Redheffer (1966) for further discussion of this
expansion.
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Introducing Eq. (21.4) and (21 S) into (21.1) gives the following linearized
equation:

[(Ti,  - To,)(w  - w,) + w,(Ti - T,)]C  + UA(T,  - To)  = rnC% (21.6)

At steady state, dT,ldt  = 0, and Eq. (21.1) can be written

w,C(Ti,  - To,)  + UA(T,,  - To,)  = 0 (21.7)

Subtracting Eq.  (21.7) from (21.6) and introducing the deviation variables

T/  = Ti  - Ti,
T;  = To  - To,

T;  = T,,  - Tys
w = w - w ,

and rearranging give the result

C[(Ti$  - T,,)W  f w,(T/  - Td)]  + lJA(T:  - TJ = m-C% (21.8)

Taking the transform of Eq. (21.8) and solving for T;(s)  give

where Kr = wsc
UA i- w,C

K2 = UA
UA + w,C

K
3

= Wo,  - Ti,)
UA + w,C

mC
rw =

UA + w,C

From Eq. (21.9),  we see that the response of Td  to T;,  Ti, or W is first-order with
a time constant rW. The steady-state gains (KS) in Eq. (21.9) are all positive.

The following energy balance can be written for the steam side of the kettle:

wvHv  - w,H,  = UA(T,  - To)  + vd:;Uv)  + rnlCI% (21.10)

Notice that we have made use of assumption 4 in writing the last term of Eq.
(21. lo), which implies that the metal in the outer jacket wall is always at the
steam temperature.

A mass balance on the steam side of the kettle yields

WV  - WC =Vdp”
dt

(21.11)
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Combining Eqs. (21.10) and (21.11) to eliminate wc  gives

W”(H,  - H,) = (U,  - H,)Vfg + tTqCl% + UA(T,  - To)

dUv
(21.12)

+ VP,-dt

The variables pv, Uy , H,, and H, are functions of the steam and conden-
sate temperatures and can be approximated by expansion in Taylor series and
linearization as follows:

where o = $$ IS
Y

Pv = Pv, + 4Tv  - TV,)

uv  =  U”,  +  W” - TV,)

Hv  =  Hv,  +  y(Tv  - TV,)

Hc  =  Hc,  +  o(Tc  - Tc,)

IsdHv
Y =-

dTv
dK

a=dT, Is

(21.13)

The parameters (Y, 4,  y, and g in these relationships can be obtained from the
steam tables once the operating point is selected.*

Introducing the relationships of Eq. (21.13) into Eq. (21.12) and assuming
the condensate temperature T, to be the same as the steam temperature TV give
the following result:

*For example, if the operating point is at 212’  F and the deviation in steam temperature is 10’  F,
we obtain the following estimate of y from the steam tables:

TVs = 212’F
H,, = 1150.4 Btu/lb

At Ty = 222O F,
H, = 1154.1

At T, = 202' F,
H, = 1146.6

Y z 1154.1 - 1146.6 = o 375
222-202 .

and
H, = 1150.4 + 0.375(T, - 212)

In a similar manner, the properties of saturated steam can be used to evaluate LY,  4, and u.
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b%,  ‘- H,, + (Y - u)(Tv - Tv,)Iw,  .= i (U,,  - H,,)
L

1 dTvaVdt  + UA(T, - To) (21.14)

Some of the terms in Eq. (21.14) can be neglected. The term

(Y - M”v  - Tv,) ,

can be dropped because it is. negligible compared with (H,, - H,,). For example,
for steam at atmospheric pressure, a change of lOoF gives a value of (y - a)(T,,  -
T,,)  of about 7 Btu/lb while (H,, - H,,) is 970 BtuIlb.  Similarly, the term
(24 - (T)(T,  - T,,)  can be neglected. For example, this term is about -4 But/lb
for a change in steam temperature of lOoF fbr  steam at about 1 atm pressure; the
term  WV, - H,,) is 897 Btu/lb under these conditions. Also, the term c#~p,/ct
is about 15 BtuAb  and can be neglected. Discarding these terms, writing the
remaining terms in deviation variables, and transforming yield

(21.15)

where Ti = T, - Tys
W”  = w,  - W”,

K 5 = H%  - Hcs
UA

TV = WV, - H,,bV  + mlC1
UA

From Eq. (21.15),  we see that the steam temperature &&depends on the steam flow
rate WV  and the water temperature TL.  The combination of Eqs. (21.9) and (21.15)
give the dynamic response of the water temperature to changes in water flow rate,
inlet water temperature, and steam flow rate. These equations are represented by
a portion of the block diagram of Fig. 21.4. Before completing the analysis of the
control system, we must consider the effect of valve-stem position on the steam
flow rate.

Analysis of Valve
The flow of steam through the valve depen& on three variables: steam supply
pressure, steam pressure in the jacket, and the valve-stem position, which we shall
assume to be proportional to the pneumatic value-top pressure p. For simplicity,
assume the steam supply pressure to be constant. with the result that the steam
flow rate is a function of only the two remaining variables;‘thus

WV  = f@1PY) (2l.L)

Because of the assumption that the steam in the jacket is always saturated, we
know that pv is a function of T,; thus

pv = gU’v) (21.17)
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This functional relation can be obtained from the saturated steam tables. Equations
(21.16) and (21.17) can be combined to give

WV = fb,g(~,)l = fl(p>  T”)

The function ft@,  T,,)  is in general nonlinear, and if an analytic expression* is
available, the function can be linearized as described previously:In  this example,
we shall assume that an analytic expression is not available. The linearized form
of fi(P,  T,)  can be obtained by making some experimental tests on the valve.
If the valve-top pressure is fixed at its steady-state (or average) value and wV is
measured for several values of TV  (or p,), a curve such as the one shown in Fig.
21.3~  can be obtained. If the steam temperature T, (or p,)  is held constant and
the flow rate is measured at several values of valve-top pressure, a curve such
as that shown in Fig. 21.3.b can be obtained. These two curves can now be used
to evaluate the partial derivatives in the-linear expansion of fl(p,T,)  as we shall
now demonstrate.

Expanding w,.  about the operating point ps ,T,,  and retaining only the linear
terms give

WV Vv  - Tv,)

This equation can be written in the’form

1-=
R,

.

(21.20)

*The  flow of steam through a controJ  valve dn &en  be represented by the relationship.

WY’  I~:&&  &q (21.18)
** .

where ps  = supply pressure of steam
pv  = pressure downstream of valve

S & = cross-sectionai  area for flow of steam through valve
C, = constant of the  vaive

For a linear valve, A0  is propokonal  to stem position and the stem position is proportional to
valve-top pressure p; under these conditions, Eq. (21.18) takes the form

w=c:PvF-E  . (21.19)
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IP,

P-
0) T,,  = T,,

FIGURE 213
Linearization of valve characteristics from  experimental tests.

The coefficients K, and -l/R, in Eq. (21.20) am  the slopes of the curves of
Fig. 21.3 at the operating point ps, TV,.  This follows from the definition of a
partial derivative. Notice that l/R,  has been defined as the negative of the slope
so that R, is a positive quantity. The experimental approach described here for
obtaining a linear form for the flow characteristics of a valve is always possi-
ble in principle. However, it must be emphasized that the linear form is use-
ful only for small deviations from the operating point. If the operating point is
changed considerably, the coefficients K, and l/R,, must be reevaluated. Notice
that, in writing Eq. (21.20),  we have assumed the valve to have no dynamic
lag between p and stem position. This assumption is valid for a system hav-
ing large time constants, such as a steam-jacketed kettle, as was demonstrated in
Chap. 10.

Block Diagram of Control System
We have now completed the analysis of the kettle and valve. A block diagram
of the control system, based on Eqs.  (21.9),  (21.15),  and (21.20) is shown in
Fig. 21.4.

The controller action is not specified but merely denoted by G,  in the block
diagram. Also, the feedback element is denoted as H. From Fig. 21.4, we see that
the steam-jacketed kettle is a multiloop control system. Furthermore, the loops
overlap. The block diagram  can be used to obtain the overall transfer function be-
tween any two variables by applying the methods of Chap. 12. After considerable
algebraic manipulation, the following result is obtained:

T, = GcG2WG~  + G(l  + WRv)
0

D(s)

T,  _ G3U + WWW

D(s) i D(s)
(21.21)

where D(s) = 1 + GsIR,  + G,G2G5KvH  - G2G4.  The terms Gl,G2,G3,G4,
Gs,G,,  and Hare defined in Fig. 21.4. For example, if G,  = K, and H = 1,
one obtains from’Eq.  (21.21) the transfer function

c K-=
R T2S2  + 2lTS  + 1

(21.22)
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Gl

FlGURE  21-4
Block diagram for control of steam-jacketed kettle.

T2  - rv7w- -
D1

2Jr =
T,,  -t r,,s  + K=jqJR,

D1

D1  = 1 + 2 + K,K,K2K5 - Kz
Y

It is seen that the response of the control system is second-order when proportional
control is used and the measuring element does not have dynamic lag. Notice that
the parameters K, TV,  and XT in Eq. (21.22) am  positive. This follows from the
fact that the parameters  K,, K,, K2,  Kg, Ry,  T,,  and 7W  am  all positive and that
K2  < 1. When a block diagram of a control system becomes very complicated,
such as the one in this example, it is convenient to simulate the control system
with a computer. When computer simulation is selected as the means of studying
the transient response of the control system, ,the  block diagram can be translated
directly into a computer program. This computer-simulation technique will be
coveted in detail in Chap. 34.
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DYNAMIC RESPONSE OF A GAS
ABSORBER
Another example of a complex system is the plate absorber* shown in Fig. 21 S.
In this process, air containing a soluble gas such as ammonia is contacted with
fresh water in a two-plate column in order to remove part of the ammonia from the
gas. The action of gas bubbling through the liquid causes thorough mixing of the
two phases on each plate. During the mixing process, ammonia diffises from
the bubbles into the liquid. In an industrial operation, many plates may be used;
however, for simplicity, we consider only two plates in this example, since the
basic principles am unaffected by the number of plates.

Our problem is to analyze the system for its dynamic response. In other
words, we want to know how the concentrations of liquid and gas change as a
result of change in inlet composition or flow rate.

Throughout the analysis, the following symbols am  used:

L, = flow of liquid leaving nth plate, moles/n-&
V,  = flow of gas leaving nth plate, moles/mm

XII = concentration of liquid leaving nth plate, mole fraction NH3

y, = concentration of gas leaving nth plate, mole fraction NH3

H, = holdup (or storage) of liquid on nth plate, moles

*The reader who has not studied gas absorption may find this subject presented in any textbook on
chemical engineering unit operations. For example, see Bennett and Myers (1982).

FIGURE 21-5
Bubble-cap gas absorber.
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In order to avoid too many complicating details, the following assumptions
will be used:

1. The temperature and total pressure throughout the column are uniform and do
not vary with changes in flow rates.

2. The entering gas stream is dilute (say 5 mole percent NHs)  with the conse-
quence that we can neglect the decrease in total molar flow rate of gas as
ammonia is removed. Likewise, we can assume that the molar flow rate of
liquid does not increase as ammonia is added.

3. The plate efficiency is 100 percent, t which means that the vapor and liquid
streams leaving a plate are in equilibrium. Such a plate is called an i&l
equilibrium stage.

4. The equilibrium relationship is linear and is given by the expression

Yn = rnxz  + b (21.23)

where m and b are constants that depend on the temperature and total pressure
of the system, and xz is the concentration of liquid in equilibrium with gas of
concentration yn. For an ideal plate

*x,  = x,

5. The holdup of liquid H, on each plate is constant and independent of flow rate.
Furthermore, the holdup is the same for each plate, that is, H 1 = Hz  = H .

6. The holdup of gas between plates is negligible. As a consequence of this
assumption and assumption 2, the flow rate of gas from each plate is the same
and equal to the entering gas flow rate; that is,

v,=v,=v,=v

In this list of assumptions, the one which is most likely to be invalid for a
practical process is that the plate is an ideal equilibrium stage.

+ If the efficiency of the plate is not 100 percent, we can introduce an individual tray efficiency of
the Murphree type, defined as

& = xn - Xn+l

x:,  - Xn+l

where x z is the concentration of the liquid in equilibrium with gas of composition y n.  Notice that for
an i&al plate E, = 1 and x,, = xi.  In general the efficiency of a plate depends on the design of the
plate, the properties of the gas and liquid streams, and the flow rates. We could include efficiency in
our mathematical model; however, to do so would greatly increase the complexity of the problem. To
account properly for the variation in efficiency with flow rates would require empirical relationships
for a specific plate design.
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Analysis

We begin the analysis of this process by writing an ammonia balance around each
plate. A mass balance on ammonia around plate 1 gives

H%  = L2x2  + Vyo  - Llxl - vyI (21.24)

This last equation states that the accumulation of NH3 on plate 1 is equal to the
flow of NH3 into the plate minus the flow of NH3  out of the plate. Notice that V
and H do not have subscripts because of assumptions 5 and 6.

A mass balance on ammonia around plate 2 gives

Hdx2
- = vy1  - L2n2  - vy2dt

(21.25)

The last equation does not contain a term L3x3, since we have assumed that
x3 =  0 .

For an ideal plate x ,, = xi, and the equilibrium relation of Eq. (21.23)
becomes

y,, = mx, + b

Substituting the equilibrium relationship into (21.24) and (21.25) gives

dxlH- = L2x2  - Llxl + Vm(xo - xl)
dt

and

H%  = Vm(xl  - xq) - L2x2

where xg = (yc - b)lm  is the composition of liquid that would be in equilibrium
with the entering gas of composition yo. Solving these last two equations for the
derivatives gives

dxl - I(L2x2 - LlXl)  +
X-H xo  - Xl)

dxz-=
dt

F(x,  - x2) - ;L2x2 (21.27)

Thus far the analysis has resulted in two nonlinear first-order differential
equations. The nonlinear terms in Eqs. (21.26) and (21.27) are L2x2 and Llx 1.
The forcing functions in this process, which must be specified as functions of t,
are the inlet gas concentration [xe  = (ye - b)lm]  and the inlet liquid flow rate
L3. In order to solve for x l(t)  and x z(t), we must have two more equations, ob-
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mined  by considering the liquid-flow dynamics on each plate. Assume that
each plate can be considered as a first-order system for which the following
equations hold: *

3% = L3-L2

and

dL1
q-  = L2-L1

dt

(21.28)

The time constants in these equations (~1 and 72)  can be determined exper-
imentally by the methods of Chap. 19. The first-order representation for liquid
dynamics was found to be adequate by Nobbe  (1961). We now have four dif-
ferential equations [Eqs. (21.26) to (21.29)],  and six variables (X 1,  ~2,  xa, LI,
L2,  L3). Since xu and L3 are the forcing functions, which are specified functions
of time, these four equations can be solved for xl(t),  x2(t),  Ll(t),  and L2(t) in
terms of xc and L3. _

We shall now divide the problem into two cases. The first case requires that
we find the response of y2 to a change in the inlet gas concentration only, the
liquid flow rate remaining constant. In this case, the problem is linear and only
Eqs. (21.26) and (21.27) are needed.

In the  second case, it is assumed that we want to know the change in outlet
concentration y2 for a change in both  inlet flow and inlet gas concentration. For
this case, four simultaneous differential equations must be solved, two of which
contain nonlinear terms. One approach to this problem is to linearize the nonlinear
terms as was done in the case of the steam-jacketed kettle of the previous example;
however, since this technique has already been illustrated, we shall not repeat it
here.

*The assumption that the plate behaves as a first-order system with respect to liquid-flow dynamics
would have to be justified experimentally. For the common bubble-cap plate, liquid builds up on the
plate and flows over a weir, which may consist of a circular pipe or a vertical plate. The resistance
to flow from the plate is therefore a weir, for which flow-head relationships are known (see footnote
in Chap. 6). However, these flow-head relationships for weirs have been developed for the flow of
liquids that am not aerated. In the case of flow of liquid over a bubble-cap plate, the liquid is very
turbulent as a result of the agitation of the bubbles rising through the liquid. For this reason, one
cannot expect the flow-head relations developed for quiescent flow to apply to the turbulent conditions
present in the liquid on a plate. The true flow-head relation should be determined experimentally.

The fact that the flow rate is assumed to vary without change in holdup on the plate (assumption
5) appears to be contradictory. Actually, to increase the flow rate, a slight increase in level (and
therefore holdup volume) above the crest of the weir is required. However, for the example under
consideration, it will be assumed that the change in level needed to produce a substantial increase in
flow is so small that the change in the amount of liquid on the plate is a small fraction of the total
liquid holdup.
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For the first case where the inlet liquid flow rate remains constant (Lt =
L2  = L), Eqs.  (21.26) and (21.27) can be written

dxl-=
dt

-ax1 + bx2  + cxo

dx2
dt = cxl - ax2 (21.31)

L V m
where a = - + -

H H

V mc=-
H

At steady state, dxlldt  = dxz/dt = 0, and Eqs. (21.30) and (21.31) can be
written

0 = -axis + bxzs  + cxos ;

0 = CXl$  - QX&

Subtracting these steady-state equations from Eqs. (21.30) and (21.3 1) and intro-
ducingthedeviationvariablesXt  = xl-xl,,X2  = x2-x2,,  andXo = xo-xo,
give

dX1
dt= -ax1 + bXz  + cXo (21.32)

Notice that Xa = Yolm because

x,  = XI-J  - xos

x.  = yo - b2% - b - Yo - Yo, _ yo- -
m m m m

Equations (21.32) and (21.33) can be transformed to give

sX1  = -ax1  + bX2  + cXo

sx2  = CXl  - ax2

We now have two algebraic equations and three unknowns (Xl, X2, and Xa).
Solving this pair of equations to eliminate Xl and replacing X2 by Yz/m and Xa
by Yolm give the transfer function

MS)_ c2/(a2  - bc)

MS) [l/(a2  - bc)]s2 + [2a/(a2  - bc)]s  + 1
(21.34)
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This result shows that the response of outlet gas concentration to a change in .inlet
gas concentration is second-order. One can show* that f for this system is greater
than 1, meaning that the response is overdamped. If the analysis is repeated for a
gas absorber containing IZ  plates, it will be found that the response between inlet
gas concentration and outlet gas concentration is &-order.

DISTRIBUTED-PARAMETER SYSTEMS
Heat Conduction into a Solid
In Chap. 5, the analysis of the mercury thermometer was based on a “lumped-
parameter” model. At that time, reference was made to a distributed-parameter
model of the thermometer. To illustrate the difference between a lumped-parameter
system and a distributed-parameter system, consider a slab of solid conducting
material of infinite thickness, as shown in Fig. 21.6. Let the input to this system
be the temperature at the left face (X = 0), which is some arbitrary function of
time. The output will be the temperature at the position x = L. For convenience,
we may consider this system to represent the response of a bare thermocouple
embedded in a thick Wall, as the surface of the wall experiences a variation in
temperature. The conductivity k,  heat capacity C, and density p of the conducting
material are constant, independent of temperature. Initially (t < 0), the slab is at
a uniform steady-state temperature. Therefore in deviation variables, which will
be used henceforth, the initial temperature is zero. The cross-sectional area of the
slab is A.

ANALYSIS. In this problem the temperature in the slab is a function of position
and time and is indicated by T(x  ,t).  The temperature at the surface is indicated
by T(O,r),  and that at x = L by T(L,t).  To derive a differential equation that

*Equation (21.34) is of the standard second-order form, K/(7*s2  + YTS  + l), with the parameters

72  = -A--
a2  - bc

and p&  = 2a
a*  - bc

Solving these two equations to eliminate T gives

Writing a and b in terms of the original system parameters (L,H,V,m)  gives

[

(LIH)(VmIH)  -In

’ = ’ - (L/H + VmIH)* I

Simplifying this expression gives

1
-1n

Since VmIL > 0, we see that 5 > 1.
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FIGURE  21-6

x x+Ax L Heat ccmhction  in a solid.

describes the heat conduction in the slab, we first write an energy balance over a
differential length Ax of the slab. This energy balance can be written

(b~~~~]-(~~~]=[~~~~

The flow of heat by conduction follows Fourier’s law: ;

dT
q=-kz

I (21.35)

(21.36)

whem q = heat flux by conduction
aTlax  = temperature gradient

k = thermal conductivity

Applying Fq. (21.36) to Eq. (21.35) gives

aT
-Akz = -$s4Ax(T  - Tr)] (21.37)

where T,  is the reference temperature  used to evaluate internal energy. The term
aTlax  Ix+rLr  can  be written

(21.38)

Substituting IQ.  (21.38) into (21.37) and simplifying give the fundamental equa-
tion describing conduction in a solid

This is often written as

Kd2T  aT-=-
ax2 at

where K = klpC = thermal  diffusivity.

(21.39)
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Several points am  worth noticing at this time. In this analysis, we have
allowed the capacity for storing heat @CA per unit length of x) and the resistance
to heat conduction (IlkA per unit length of X) to be “spread out” or distributed
uniformly throughout the medium. This distribution of capacitance and resistance
is the basis for the term distributed parameter. The analysis has also led to a
partial differential equation, which in general is more difficult to solve than the
ordinary differential equation that results from a lumped-parameter model.

TRANSFER FUNCTION. We am  now in a position to derive a transfer function
from Eq. (21.39). First notice that, since T is a function of both time t and position
x,  a transfer function may be written for an arbitrary value of X. In this problem,
the temperature is to be observed at x = L; hence the transfer function will relate
T(L,t) to the temperature at the left surface T(O,t), which is taken as the forcing
function.

Equation (21.39) will be solved by the method of Laplace  transforms. Taking
the Laplace  transform of both sides of Eq. (21.39) with respect to t gives

K I,$f$x,  t)ews’dt  = om s(x,  t)ems’dt
I

(21.40)

Consider first the integral on the left side of Eq. (21.40). Interchanging the order
of integration and differentiation* results in

where ?;(x  ,s)  is the Laplace  transform of T(x ,t). + It should be noted that the
presence of x has no effect on the second integral of Eq. (21.41) because the
integration is with respect to t.  Also note that the derivative on the right side of
Eq. (21.41) is taken as an ordinary derivative because T(x ,s)  will later be seen to
be a function of only one independent variable x and a parameter s.  Next consider
the integral on the right side of Eq.  (21.40). Again, the presence of x has no effect
on the integration with respect to t,  and the rule for the transform of a derivative
may be applied directly to yield

Iom f$x,t)e-“‘dt  = s?;(x,s)  - T(x,O) (21.42)

where T(x ,0) is the initial temperature distribution in the solid. Introducing the
results of the transformation into Eq. (21.40) gives

*This interchange is allowed for most functions of engineering interest. See R. V. Churchill (1972).
+ In this chapter the overbar  will often be used to indicate the Laplace  transform of a function of two
variables.
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K d2?;(x,s)
dx*

= s?;(x,s)  - T(x,O)

The partial differential equation has now been reduced to an ordinary differential
equation, which can usually be solved without difficulty. It should be clear that
s in Eq. (21.43) is merely a parameter, with the result that this equation is an
ordinary second-order differential equation in the independent variable n.  This
follows because there are no derivatives with respect to s in Eq. (21.43). Since
we have taken T(x,O)  = 0 for the example under consideration, Eq.  (21.43)
becomes

(21.44)

Equation (21.44) is a linear differential equation and can be solved to give

T = Ale- Gx + A2e @’ (21.45)

The arbitrary coefficients A1  and A2  may be evaluated as follows: In order that
?; may be finite as x --,  a, it is necessary that A2 = 0. Equation (21.45) then
becomes

T = Ale-@x (21.45a)

The transformed forcing function at x = 0 is ?;(O,s),  which can be substituted
into Eq. (21.4%) to determine Al;  then

?;(O,  s) = Aleo

or
Al  = T(O,  s)

Substituting Al  into Eq. (21.45~) gives

(21.46)

By specifying a particular value of x, say x = L, the transfer function is

(21.47)

STEP RESPONSE. To illustrate the use of this transfer function, consider a forcing
function that is the unit-step function; thus

T(0,  t) = u(t)

for which case T(O,s)  = l/s. Substituting this into Eq. (21.47) gives

?;(L,s)  = Ie-flL
S

(21.48)
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To obtain the response in the time domain, we must invert Eq. (21.48). A table
of transforms* gives the following transform pair:

where erfc  x is the error-function complement of x defined as

erfc  x = 1 - -; ox e-“‘du
5

This function is tabulated in many textbooks+ and mathematical tables.
Using this transform pair, l&. (21.48) becomes

T(L, t) = erfc- 1
A plot of T versus the dimensionless group K t/L2  is shown in Fig. 21.7.

SINUSOIDAL RESPONSE. It is instructive to consider the response in temperature
at x = L for the case where the forcing function is a sinusoidal variation; thus

T(0,  t) = Asinot

Using the substitution rule of Chap. 16, in which s is replaced by jo,  Eq. (21.47)
becomes

(21.51)

*Tables  of transforms that include transform pairs frequently encountered in the solution of partial
differential equations may be found in many textbooks on heat conduction and applied mathematics.
For example, see Mickley,  Sherwood, and Reed (1957).

Inversion of complicated transforms such as that of Eq. (21.48) can be achieved systematically by
the method of complex residues, which is also  discussed in the above reference.
t&e  Carslaw  and Jaeger (1959),  p. 485.

Response of temperature in the interior of a solid to
a unit-step change in temperatum  at the surface.
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To obtain the AR and phase angle requires that the magnitude and argument
of the right side of Eq. (21.51) be evaluated. This can be done as follows: First
write j in polar form; thus

j = ,.Mn

from which we get

Substituting the positive form* of h into Eq. (21.51) gives

R%  jw) =
%A jw)

e- &ZFL,-j  JZZL

From this form, we can write by inspection

(21.52)

Phase angle = & - rad (21.53)

From these results, it is seen that the AR approaches zero as o + 03 and
the phase angle decreases without limit as o + ~0.  Such a system is said to have
nonminimum phase lag characteristics. With the exception of the distance-velocity
lag, all the systems that have been considered up to now have given a limited
value of phase angle as w + ~0.  These are called minimum phase systems and
always occur for lumped-parameter systems. The nonminimum phase behavior is
typical of distributed-parameter systems.

‘Ransport  Lag as a Distributed-parameter
System
We can demonstrate that the transport lag (distance-velocity lag) is, in fact, a
distributed-parameter system as follows: Consider the flow of an incompressible
fluid through an insulated pipe of uniform cross-sectional area A and length L, as
shown in Fig. 21.8~.  The fluid flows at velocity v, and the velocity profile is flat.
We know from Chap. 8 that the transfer function relating outlet temperature T,  to
the inlet temperature Ti is

To(s)e-wv)s -
C(s)

*Notice that the substitution of -(l + j)/ fi into F.Q.  (21.51) leads to a result in which the AR  is
greater than 1 and the phase angle leads. This is contrary to the response of the physical system and
is not admitted as a useful solution.
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FIGURE 21-8
Obtaining the transfer function of a transport lag
from a lumped-parameter model.

Let the pipe be divided into n zones as shown in Fig. 2l.M. If each zone of
length LJn  is considered to be a well-stirred tank, then the pipe is equivalent to n
noninteracting first-order  systems in series, each having a time constant*

LlT = - -
n v

(Note that taking each zone to be a well-stirred tank is called lumping of param-
eters.) The overall transfer function for this lumped-parameter model is therefore

To “distribute” the parameters, we let the size of the individual lumps go to zero
by letting n + m.

To(s)  _ .
I

1 1
nG(s) r!z  (L/v)sln  + 1

The thermal capacitance is now distributed over the tube length. It can be shown
by use of the calculus that the limit is

which is the transfer function derived previously. This demonstration should pro-
vide some initial insight into the relationship between a distributed-parameter
system and a lumped-parameter system and indicates that a transport lag is a
distributed system. ’

Heat Exchanger
As our last example+ of a distributed-parameter system, we consider the double-
pipe heat exchanger shown in Fig. 21.9. The fluid that flows through  the inner

*This expression for 7 is equivalent to that appearing in Eq. (9.10). Since the transfer function for
flow thmgh a tank was developed in Chap. 9, the analysis will not be repeated  hen.
+The  analysis presented here essentially follows that of W. C. Cohen and E. E  Johnson (1956).
These authors also present the experimental results of frequency response tests on a double-pipe,
steam-to-water heat exchanger.
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FIGURE  213
Double-pipe heat exchanger.

pipe at constant velocity v is heated by steam condensing outside the pipe. The
temperature of the fluid entering the pipe and the steam temperature vary according
to some arbitrary functions of time. The steam temperature varies with time, but
not with position in the exchanger. ‘Ihe metal wall separating steam from fluid is
assumed to have significant thermal capacity that must be accounted for in the
analysis. The heat transfer from the steam to the fluid depends on the heat-transfer
coefficient on the steam side (h.) and the convective transfer coefficient on the
water side (hi). The resistance of the metal wall is neglected. The goal of the
analysis will be to find transfer functions relating the exiting fluid temperature
T(L,  t) to the entering fluid temperature T(O,t) and the steam temperature T,(f).

The following symbols will be used in this analysis:

T(x, t) = fluid temperature
T&x, t) = wall temperature

TV(f)  = steam temperature
T,  = reference temperature for evaluating enthalpy
p = density of fluid
C = heat capacity of fluid

pw = density of metal in wall
C, = heat capacity of metal in wall
Ai  = cross-sectional area for flow inside pipe

A,,, = cross-sectional area of metal wall
Di  = inside diameter of inner pipe
D, = outside diameter of inner pipe
hi = convective heat-transfer coefficient inside pipe
h, = heat-transfer coefficient for condensing steam
v = fluid velocity

ANALYSIS. We begin the analysis by writing a differential energy balance for the
fluid inside the pipe over the volume element of length Ax (see Fig. 21.9). This
balance can be stated
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The terms in this balance can be evaluated as follows:

Flow of enthalpy in at x = VAi  PC (T - Tr)

Flow of enthalpy out at x +  AX = VAipC [(  $)-Tr]T +

Heat transfer through film = TDih  i Ax (T,  - T)

Accumulation of internal energy = -$A$Ax  C (T - Tr)]

Introducing these terms into Eq. (21.54) gives, after simplification,

dT-=
at

-vg  + L(T,  - T)
71

(21.54)

(21.55)

where L - ‘rrDihi
71 4PC

An energy balance is next written for the metal in the wall, over the volume
element of length Ax. This can be stated as follows:

Expressing each term in this balance by symbols gives

rDohoAX(Ty  - Tw)  - nDihiAx(Tw  - T) = A,AxP,C,$ (21.56)

Simplifying this expression gives

8TW
dt - 952

- &TV  - T,,,)  - &(T,  - T)

where 1 _ TDihi 1 rD,ho
712 &pwC, - = &p&v722

We now have obtained the differential equations that describe the dynamics
of the system. As in previous problems, the dependent variables will be tmns-
formed to deviation variables. At steady state, the time derivatives in Eqs. (21.55)
and (21.57) am  zero, and it follows that
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0 = -vz + L(T,, - Ts)
71

and

0 = $(T,,  - Tw,) - $v, - Td

(21.58)

where the subscript s is used to denote the steady-state value. Note that to de-
termine the steady-state values of the temperature requires the solution of two
simultaneous equations, the first of which is an ordinary differential equation.
Thus, the steady-state temperature T, is a function of x and may be obtained by
solution of Eqs. (21.58) and (21.59) as

Ts = TV,  + K, - T&XP  - ~71[ x/(l+:)l
where Tso is the normal entrance temperature. All equations for T ' to be derived
below should be recognized as deviations from this expression.

Subtracting Eq. (21.58) from (21.55) and Eq. (21.59)from  (21.57) and
introducing deviation variables give

dT' ,

dt= -$- + +T; -T')
71

dT,:- 1
dt - -$T;  - T;)-  $(T;  - T')

(21.60)

(21.61)

where T'= T-T,
T;  = T,  - T,,
T; = TV - TVs

Equations (21.60) and (21.61) may be transformed with respect to t to yield
--I

S?;’  = -$g-  + L(T:,  - ?;‘)
71

(21.62)

(21.63)

where T’ = ?;‘(x  ,s)

T;  = ?;;(x,s>

‘;I = T:(s)

In Eqs.  (21.62) and (21.63) it has been assumed that the exchanger is initially at
steady state, so that T(x,O)  = T,, T,(x,O)  = T,,,  and T,(O)  = Tys.
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Eliminating ?;k  from Eqs. (21.62) and (21.63) gives, after considerable
simplification

(21.64)

where a(s) = s + -!- - 722

71 71(7127228  + 712 + 722)

b(s) = 712

71(7127229  + 712 + 722)

Equation (21.64) is an ordinary first-order differential equation with boundary
condition ?;‘(x,s) = ?;‘(O,s)  at x = 0.

It can be readily solved to yield

T’(x, s)  = ?;‘(O,  s) + [l - c-(a’“)x]  $(s)  - ?;‘(O,  s)
i 1

where ?;‘(O,s)  is the transform of the fluid temperature at the entrance to the
pipe and F:(s)  is the transform of the steam temperature. From Eq. (21.65),  the
transfer functions can be obtained as follows:

If the steam temperature does not vary, T:(s) = 0; the transfer function
relating temperature at the end of the pipe (X = L) to temperature at the entrance
is

a+ $1 _ e -(alv)L
T’(0,  s)

(21.66)

Setting l/r1  to zero in the expression for a(s) [Eq.  (21.64)]  shows that
a(s) = s and hence the response is simply that of a transport lag. This is in
agreement with the physical situation where hi approaches zero [Eq. (21.55)],  for
which case the wall separating cold fluid from hot fluid acts as a perfect insulator.
We saw in Chap. 8 that this situation is represented by a transport lag.

If the temperature of the fluid entering the pipe does not vary, the transfer
function relating the exit fluid temperature to the steam temperature is

T’(L,  s)

m
= $[I  - e-wv)q (21.67)

In principle, the response in the temperature of the fluid leaving the ex-
changer can be found for any forcing function, T(O,t)  or T,(t), by introducing
the corresponding transforms into Eq. (21.66) or (21.67). However, the resulting
expression is very complex and cannot be easily inverted. For the case of sinu-
soidal inputs, the substitution rule discussed in Chap. 16 can be used to determine
the AR and phase angle of the frequency response. Cohen and Johnson give a
Bode diagram corresponding to Eq. (21.67) for a specific set of heat-exchanger
parameters. This diagram is shown in Fig. 21.10.
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FIGURE 21-10
Bode diagram of heat exchanger for variation in
temperature (Cohen and Johnson).

Notice that the theory predicts an interesting resonance effect at higher fre-
quencies.  The resonance effect has been observed experimentally in a steam-to-
water exchanger. See Lees and Hougen (1956). Unfortunately, the experimental
data of Cohen and Johnson do not extend to sufficiently high frequencies to exhibit
resonance. The reader is referred to the original article for further details.

SUMMARY

In this chapter, several complex systems have been analyzed mathematically. The
result of each analysis was a set of equations (algebraic and/or differential) that
presumably describe the dynamic response of the system to one or more distur-
bances. The process of obtaining the set of equations is often called modeling,
and the set of equations is referred to as the mathematical model of the system.
In general, the model is based on the physics and chemistry of the system. For
example, in the analysis of a heat exchanger, one may write that the heat flux
through a wall is equal to a convective transfer coefficient times a temperature
driving force.

For a process not well understood, there is little chance that an accurate
model can be obtained from the theoretical approach used here. For such systems,
a direct dynamic test can be made. To do this, a known disturbance such as a
pulse, step, or sinusoidal input is applied and the response recorded. This approach
was discussed in Chap. 19. On the other hand, a model based on a theoretical
analysis is extremely valuable, for it means that the system is well understood
and that the effect of changes in system design and operation can be predicted.

The analysis of a steam-jacketed kettle provided an example of a nonlin-
ear system containing nonlinear functions of several variables. The problem was
handled by linearizing these functions about an operating point and ultimately
obtaining a block diagram of the system from which the transfer function of the
control system could be obtained. Although this approach is relatively straight-
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forward, the resulting linear model can only be used over a narrow range of
variables.

The analysis of the gas absorber gave some insight into the dynamic char-
acter of a typical multistage process that is widely used in the chemical process
industries. A linear analysis of an n-plate column leads to IZ  ordinary differen-
tial equations, which combine to give an overdamped nth-order response. Non-
linearities may be present in this system in such forms as a product of flow and
concentration or a nonlinear equilibrium relationship. When changes in inlet flow
occur, a set of differential equations describing the dynamics of the liquid flow
must be added to those describing mass transfer. When the change of plate effi-
ciency with flow is considered, the model of a gas absorber becomes even more
complex. Most of the design techniques developed in the past for multistage
operations (gas absorption, distillation, etc.) have applied to steady-state opera-
tion. The dynamic analysis of such processes calls for dynamic parameters that
are usually unavailable. For example, the liquid-flow dynamics of trays used in
distillation towers are relatively unknown.

The discussion of distributed-parameter systems further illustrated the com-
plexities that can arise in physical systems. The distributed-parameter systems lead
to partial differential equations, which may be very difficult to solve for most of
the forcing functions of practical interest. However, we saw that the response
of distributed-parameter systems to sinusoidal forcing functions can be obtained
directly by application of the substitution rule, in which s is replaced by jw. A
distributed-parameter system features nonminimum phase lag characteristics. This
is in sharp contrast to the lumped-parameter systems for which the phase angle
approaches a limit at infinite frequency.

As systems are analyzed in mom detail and with fewer assumptions, the
models that  describe them become more complex, although more accurate. To
predict the response of the system from the model requires that equations of
the model be solved for some specific input disturbance. The only practical way
to solve a complex model is to use a computer. This method of solving the
mathematical model is often called computer simulation. The computer response
will resemble that of the physical system if the model is accurate. In the last
section of this text, the computer and its use to simulate control systems will be
discussed in considerable detail.
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CHAPTER

22
SAMPLING

AND
Z-TRANSFORMS

The wide use of digital computers in control makes the inclusion of a section on
sampled-data control imperative. Sampled-data control was actually established
over 25 years ago by electrical engineers before the digital computer was widely
used to control chemical processes. A sampled-data system is one in which the
flow of signals in the control system is interrupted at one or more points. In this
book, the interruption or sampling will occur every T units of time. Such sampling
is called uniform sampling and is the usual type in practical applications.

To understand the nature of a sampled-data system, consider a typical, single-
loop continuous control system, shown in Fig. 22.1~.  The system is referred to
as continuous because the signal flow between blocks is continuous or without
interruption; i.e., at any instant of time and at any location in the loop, one can
observe a changing value of the signal during a transient. For example, the re-
sponse from the measuring element varies in a continuous manner from moment
to moment. A typical temperature transmitter would provide such a continuous
signal. In chemical processes, some measurements cannot be made continuously.
Chemical composition is a measurement that may not be continuous. For exam-
ple, a sample of a process stream may have to be subjected to a chemical analysis
that takes some finite period of time. An example would be an automatic chro-
matograph that must process a sample of fluid in a packed column for a fixed
time T. For this example the measured value of composition is known only at the
end of the processing time T. If a new sample of fluid is taken successively ev-
ery T units of time and the result of the chemical analysis is held constant between

3 4 9
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sampling instants, one can represent the control system as shown in Fig 22.M.
In this case, the measured signal B is held constant between sampling instants
and delayed by an amount T. The delay occurs because of the time needed to
process the sample of fluid in the chromatograph. Note that for simplicity, the
chromatograph processing time and the sampling time have been taken to be the
same value T. In Fig. 22. lb this disruption in the flow of signal B is represented
by a sampling switch and the holding of the value of the signal is obtained by
the block labeled “hold.” The natme  of the signals from the measuring element B
and the sampled signal B, are shown in Fig. 22.1 b. The output from the hold is a
stair-step response, which approximates the continuous signal B mote accurately
as the sampling period T decreases.

Another reason for studying sampled-data control is to be able to describe
the operation of a digital computer as a controller. The output of a continuous
electronic or pneumatic controller changes in a continuous manner. When a digi-
tal computer is used to implement a control law, a calculation must be performed
to calculate the new value of the controller output every T units of time. The
calculation, which is based on a numerical expression of the control law, will be
developed in detail later. At each sampling instant, the computation of the con-
troller output is made and then held at a constant value until the next sampling

B Measuring
element

-1 B,  I Ho,d , ,~ ,Sampling  swityh 1

2

4 B

0 T 2T3T 4T t

(b)
FIGURE 22-1

T 2T3T 4T i

Comparison of (a) continuous control and (b) sampled-data control.
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FIGURE 22-2
Computer control system.

instant occurs, at which time a new controller output is computed and held. This
computation and holding is repeated every T units of time, Figure 22.2 shows a
diagram that represents a digital control system. In this figure, the typical elements
of the system (valve, process, and measuring element) are continuous and behave
the same as those in a continuous control system. The usual continuous controller
is replaced by a digital computer, which is programmed to implement a control
law, such as PI control. Since the digital computer works with digital information,
an analog-to-digital converter (A/D) is needed to convert the continuous (analog)
signal to a digital signal that can be used by the computer. Since the output from
the calculation is a digital signal, a digital-to-analog converter (D/A) is needed
on the output of the computer so that a continuous (analog) signal is available
to operate the valve. Typical analog signals associated with the A/D and D/A
converters range from 4-20 ma or 1-5 V. The sampling switches am  shown to
indicate the sampled nature of the signals. These switches are purely symbolic;
there are no mechanical switches in the hardware used to implement a controller.
The hold block, which is shown in the figure, holds the value of the controller
output constant between sampling instants. The output of the hold is a stair-step
function.

CLAMPING

The continuous functionf(t)  is said to be clamped to produce the function fc(t)  as
shown in Fig. 22.3. The period of sampling is T and the frequency is ws  = 2dT
radians/time. The clamping can be described mathematically by the combination
of impulse modulation and the application of a zero-order hold as will soon be
shown.

0 T 2T 3T 4T 5T t
FIGURE 22-3
Clamping.
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FIGURE 22-4
0 T 2T 3T 4T t Impulse modulation.

Impulse Modulation
As shown in Fig. 22.4, an impulse-modulated function consists of a sequence of
impulse functions, the magnitudes of which equal the values of the continuous
function at sampling instants. The impulse-modulated function is given the symbol
f*(t). A convenient symbol for the impulse modulation sampler is shown as a
switch (J  ), which closes momentarily every T sec. It should be noted that the
impulse modulation switch is purely symbolic, for there is no switch of this type
present in the hardware used in sampling signals.

Zero-order Hold
The zero-order hold is defined by the transfer function

1 - e-Ts
G/t,&)  = s (22.1)

Combining impulse modulation with the zero-order hold, as shown in Fig. 22.5,
provides the clamping. To illustrate how the zero-order hold shapes the sequence
of impulses into a clamped signal, a block diagram of the hold is shown in
Fig. 22.6 in which an integrator and a transport lag are connected to implement
the zero-order hold. The operation of a zero-order hold can be understood by
expressing F,(s) as follows (see Fig. 22.5):

Fc(s) = F+(s)1  - e-Ts  _ F*(s)F*(s)e-Ts
s S s

(22.2)

where F*(s) is the Laplace  transform of the impulse-modulated function, f*(t).
This expression shows that the clamped function fc(t)  is obtained by a combina-
tion of integration, transport lag, and subtraction. Recall that integration in Eq.
(22.2) is represented by l/s and transport lag by emTs.  To understand the signals
at the output of the integrator, one must recall that the integration of an impulse

f(t)  / f*(t)
F(s)  T F*(s)

F(z)

1 - @ fc(t)
s F,(s) FIGURE 22-5

Clamping.
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f(c)

0 T 2T 3T 4T 0 T2T3T 0 T 2T ST
FIGURE 22-6
Construction of a clamped signal.

function is a step function. The impulse occurring at t = 0 results in a pulse*
of width T. (See Fig. 22.6.) The impulse occurring at t = T results in a pulse of
width T starting at t = T. The remaining impulses each contribute a pulse of width
T starting at successive values of T. The height of each pulse equals the magni-
tude of the impulse that produced it. The combination of these pulse functions
provide the stair-step function associated with clamping. This rather “mechanical”
description of clamping through implementation of the zero-order hold transfer
function may give the reader an intuitive feel for the abstract mathematical
expression involved.

LAPLACE  TRANSFORM OF THE
IMPULSE-MODULATED FUNCTION
Let i(t)  be a sequence, or train, of unit impulses that are separated by period T.
This may be expressed as follows:

co
i(t) = s(t) + @t  - T) + s(t - 2T) + ... = ci?(t  - nT) (22.3)

n=O

The “starred” function f*(t)  may be written as the product of f(t)  and i(t):

f*(t)  = fW(t) (22.4)

Introducing the expression for i(t) from EQ. (22.3) into this equation gives

f*(t) = f(t) g*(t  - nT)
n=O

*The pulse occurs because the integration of the impulse at I = 0 is combined with the integration
of a delayed impulse of the same magnitude, but opposite sign, at t = 2’.
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Since i(t) has a non-zero value only at sampling instants (t = nT), f(t) may be
replaced by f(nT)  and then placed within the summation to produce the result

f*(t)  = &T)s(r  - nT) (22.5)
n=O

Applying the Laplace  transform of a unit. impulse, which is unity, and applying
the theorem on translation of a function (See Chap. 4) to this expression for f*(t)
give the Laplace  transform of the impulse-modulated function:

F*(s)  = LCf*(t)}  = -&T)e-“T”
n=O

(22.6)

The function F*(s) is referred to as the starred transform of f(t).
An alternate form for F*(s) which is useful in proofs and derivations is

given in the appendix of this chapter. This alternate form is based on the Fourier
series representation of a periodic function.

THE Z-TRANSFORM
We have now reached the point where the Z-transform can be introduced. The
Z-transform is simply the Laplace  transform of the impulse-modulated function,
f*(t), in which z = e Ts  Keeping this point in mind, we may write Eq. (22.6).
in the form

or

F(z)  = ZCf(t)}  = L@*(t)}  = ~f(nT)e-“TsI,=,rs
n=O

(22.7)

F(z) = ZCf(t)}  = -j-f(nT)z-” (22.8)
n=O

In the definition of the Z-transform given by either of these equations, we have
expressed the Z-transform by F(z)  or ZCf(t)}.  lko examples of the use of this
definition of the Z-transform will be given.

Example 22.1. The unit step.

f(t) = u(t) = 1

therefore, f(G)  = 1 for n  2  0

From Eq.  (22.8) we write

Z{u(t>}  = -g-n
0

This infinite series has the sum z/(z - 1); therefore the result is
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Example 22.2. The exponential function.

f(t) = e-%(t)

z{e
0 0

This infinite series has the sum as shown below

iqe-‘“u(t)} =
z - ;-TIT

Table of lkansform Pairs
Tables have been prepared that give the Z-transforms of various functions. A short
table of transform pairs is given in Table 22.1. This table was adapted from an
extensive table in Tou(1959). Table 22.1 includes for each.function  of t listed, the
Laplace  transform, F(s), the Z-transform, F(z), and the modified Z-transform,
F(z ,m).  The modified Z-transform will be discussed later. An example of a Z-
transform pair from this table is

-at . 2
e . z _  e-aT

Note that this is the same as Example 22.2 with a = l/r.  Tables of Z-
transforms are very useful in obtaining the transients for sampled-data systems
and they are used in much the same way as tables of ordinary Laplace  transforms
are used for continuous systems.

SUMMARY
One reason for studying sampled-data control is to be able to describe mathe-
matically a process in which the flow of signals is interrupted periodically. An
example of such a system is one that contains a chemical analyzer (e.g., a chro-
matograph) that produces a measured value of composition after a fixed processing
time. Another reason for studying sampled-data control is to be able to describe
the operation of a microprocessor-based controller.

The form of sampling used in practical applications is clamping, a process
of sampling that holds a signal constant between sampling instants. It was shown
that clamping is produced by sending an impulse modulated signal through a
zero-order hold.

lko forms of the Laplace  transform of the impulse-modulated function f *(t  )
were presented. One of these forms was used to define the Z-transform in which
the Laplace  variable s is replaced by z through use of the transformation z = e Ts.
A short table of Z-transforms was provided. The Z-transform will be used in
the next chapter to compute the response of sampled-data systems at sampling
instants.
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APPENDIX
22A

An Alternate Form of F*(s)

Another form for F*(s) which is useful in proofs and derivations can be obtained
by the application of a Fourier series expansion. (See Tou, 1959 for more detail).
An outline of the derivation is given below.

A Fourier series representation of a periodic function g(t) may be written

g(t)  = 2 ckejkost
k=-m

wherej = fi  and the coefficients c k are obtained from the following equation
in which the integration is done over one period T. For this application, it is
convenient to choose the period from -Tl2 to Tl2.

Ck  = 1
I

Ti2

T -TR
g(f)e -jkw,tdt

Applying this to i(t), the sequence of unit impulses given by EQ. (22.3)) one
obtains

m

i(t) = 1 Ckejkosr
kc-CO

where

s(t - nT)e-jkWstdt

In the range of integration from -T/2 to T/2, the only term in the summation of
delayed unit-impulse functions that contributes to the integrand is s(t);  therefore,
we may write the equation for Ck as

W)e
-ik%tdt

One can show that this integral becomes 1; therefore

ck = f

Equation (22.4) can now be written

f*(t)  = f(t);  2 ejkost
k=-cc
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After placing f(t) inside the summation, we take the Laplace  transform of each
side of the above equation and apply the theorem on the translation of a transform
from Chap. 4 to each term on the right side; the result is

F*(s) = LCf*(t)}  = f 2 F(s + jko,) (22.9)
kc-m

Use will be made of this expression in the next chapter.



CHAPTER

23
OPEN-LOOP
AND
CLOSED-LOOP
RESPONSE

To calculate the open-loop response of a sampled-data system, one can develop a
pulse transfer function that is the counterpart of the transfer function for continuous
systems.

OPEN-LOOP RESPONSE
Pulse Tkansfer  Function
Consider the block diagram in Fig. 23.1 in which an impulse-modulated signal
enters a block having the transfer function G(s). We may write

C(s) = G(s)F*(s) (23.1)

Let there be a fictitious sampler attached to the output of G(s). Using the alternate
definition for a starred transform from the previous chapter [Eq. (22.9)],  the
sampled function C*(S) in Fig. 23.1 may be written:

C*(s) = f 5 C(s  + jnw,) = f f: G(s  + jnms)F*(s  + jno,) (23.2)
n=-a n=-co

As shown in the appendix of this chapter, F*(s) is periodic in s with fre-
quency w,,  which means that

F*(s) = F*(s + jno,) (23.3)
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Fictitious sampler 2 , c*(f)
b--d  ““r--

c (4 FIGURE 23-1
C(z) Open-loop sampled-data system.

Equation (23.2) may be written:

C*(s) = F*(s) $ 2 G(s  + jno,)
I n=-CO 1

(23.4)

Recognizing the term within braces on the right side to be simply G *(s)  according
to the alternate definition of the starred transform given by Eq.  (22.9),  we may
write

C*(s) = F*(s)G*(s) (23.5)

Recalling that the Z-transform is simply the Laplace  transform of the starred
function in which z 7 eTs  , Eq.  (23.5) may be written

C(z)  = Ftz)Gtz) (23.6)

The term G(z) is called the pulse trunsfer  function. Equation (23.6) states that
the sampled output is equal to the product of the sampled input and the pulse
transfer function. This is analogous to the continuous case where we write C(S)  =
F(s)G(s).  Note that the inverse of C(z)  gives information about c(t) only at
sampling instants, 0, T, 2T,  3T,  . . . ,nT.

Example 23.1. Use of the pulse transk function. To see how Eq.  (23.6) may
be used, consider the example shown in Fig. 23.2 in which a triangular wave signal
enters the sampler. For this example

l/T
G(s) = & = -

S+$
(23.7)

From a table of Z-transforms (Table 22.1) we obtain for this G(s)

G(z)  = i, _ “,+ (23.8)

FIGURE 23-2
Example of an open-loop system.
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Using the basic definition of a Z-transform in Eq. (22.8), we may express the output
of the sampler as:

F(z) = -j?f(nT)z-”  = 0 + z-l +2z-*+z-3+o (23.9)
0

Applying Eq. (23.6) gives

c(~) = F(z)G(z) = (z-l + 2z-*  + z-‘)
I

o r

1 1+ 22-1  + 2-2
C(z)  = ; z - e-Tf~

(23.10)

For the purpose of having a numerical result, let T = 1 and T = 1. Then T/r = 1
and emT/’  = 0.368.

The problem now facing us is the inversion of Eq. (23.11). ‘Ike  methods will
be discussed: (1) long division and (2) use of a table of Z-transforms. To apply the
method of long division, we simply divide the denominator of Eq.  (23.11) into its
numerator as shown here.

z-l +  2.368z-*  +  1.871~-~  +  .**

z - 0.368
I

1 + 2z-’ + Z-*

1 - 0.368z-’

2.368z-’  + Z-*

2.368z-’  - 0.871z-*

1.8712-2

From this result, we may write

C(z)  = z-l + 2.368z-*  + 1.871~-~  + *** (23.12)

Interpretation of Eq. (23.12) in the time domain may be done with the aid of the
basic definition of the  Z-transform of Eq. (22.8) by recognizing the coefficients of
the terms on the right side of Eq. (23.12) to be the values of c(t)  at sampling
instants; thus

c(O)  =  0

c(T) = 1.0

c(2T)  = 2.368

c(3T)  = 1.871

and so on

Recall that the  inversion of the Z-transform gives information about the continuous
function c(t) only at sampling instants. The values of c(t) at times other than
sampling instants must be obtained by some other means. Later, we shall show that
the modified Z-transform can be used to obtain intersample information.

One may also apply basic knowledge of the response of the system to de-
termine c(t) at times between sampling instants. For a first-order response, this
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2 . 3 7  - - - - - - - - - Exponent ia l decay

2
k

FIGURE 23-3
Response  of  open- loop system in
Fig. 23.2 (2’  = 1).

approach is quite easy. In Figure 23.3 is shown the continuous response of c(t).
Between sampling instants, the response decays exponentially.

Inwmion of Z-transform
Fuo methods often used to invert Z-transforms are:

1. Method of long division. (This method was just covered in the previous ex-
ample.) .

2. Method of partial fraction expansion.

The method of partial fraction expansion follows the same procedure as that
for inversion of ordinary Laplace  transforms. To illustrate this method, consider
the following example.

Example 23.2. Invert the following C(z):

C(z) =
(2 - a;(,  - b)

This may be written:

C(z) 1 A B
-=

Z (2 - a)(z - b )  =  z - a  + z - b
(23 .13)

The reason for placing z in the denominator on the left side is for mathematical
convenience, as will be shown later. Evaluating the constants A and B gives:

A =  l/@-b)  a n d  B  =  -l/@-b)

We may now write
1 zC(z) = - - - -

1
Z

a - b  z - a z - b 1 (23 .14)

Bach term within the brackets can be inverted by referring to a table of transform
pairs. From Table 22.1, we have the transform pair

z/(z - a) : arm

At sampling instants, a *lT becomes unTIT  or a”. In a similar manner, the inverse
of z/(z,  - b) is b”.  Using these results gives

c(U) = --&, [a” - b”] (23 .15)



364 SAMPLED-DATA CONTROL SYSTEhG

For the problem solved by long division in Example 23.1, we obtain the
following result if the method of partial fraction expansion is used:

c(nT)  = &n-l)  +  &-(n-2)  +  e-(n-3) (23.16)

The three terms in brackets do not apply until n = 1, rz = 2, and it = 3,
respectively. To obtain this result, we need to use a theorem on the Z-transform
of a translated function, which will be discussed later.

Comparison of Methods of Inversion
1. Long  division. This method is good when one is interested in the solution

for only the first few sampling instants. One must be careful not to make
errors in performing the long division, for an error at one sampling instant
will propagate errors at later sampling instants. The method of long division
can be programmed for a computer to obtain an error-free solution for as many
sampling instants as desired. A computer program written in BASIC for long
division is given in the appendix of this chapter for use by the interested reader.

2. Partial jiaction  expansion. This method requires the usual algebra of partial
fraction expansion. However, once the solution is obtained, the response at any
sampling instant can be found without relying on values at previous sampling
instants.

CLOSED-LOOP RESPONSE
The closed-loop response for a sampled-data system can be obtained in a man-
ner similar to that for continuous closed-loop systems. However, there are some
differences that will be explained in this section.

Consider the sampled-data negative feedback control system shown in Fig.
23.4. In this process, clamping is provided by the combination of an impulse
modulator and a zero-order hold. To obtain expressions that relate C to R or C to
U, we proceed as follows. From the diagram, we can write:

Us)  = Gc(Wp(M(s)  - Gc(W,WW)C*W  + Gp(~)U(~) (23.17)

This expression is obtained by combining the signals resulting from R(s), C *(s),
and U(s) after they move through their respective paths to the output C. This
expression may also be written as

CC FIGURE 23-4
Closed-loop sampled-data system.
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C(s) = G,G,R(s)  - GcGpGh(s)C*(s)  + G&J(s) (23.18)

where the overbar  above several terms means that the functions of s corresponding
to each term are multiplied together to form one function of s.  Further discussion
of the usefulness of the overbar  will be given later.

Taking the starred transform of both  sides of Eq. (23.18) gives

C*(s) = w*(s)  - G,G,Gh  *(s)C*(s)  + v*(s) (23.19)

Again, it must be pointed out that the overbar  above several terms means
that these terms arc multiplied together before taking the starred transform. The
middle term on the right side of Eq. (23.18) requires special attention; taking the
starred transform of G,G,G,(s)C*(s)  gives G,G,G,(s)C*(s).  The explanation
of this result is given in the appendix.

Solving for C*(s) gives

c*(s)  = G,G,R*w  + W*(s)
1 + G,G,G/,  *(s) 1 + G&G/,  *(s)

(23.20)

The starred functions of s appearing in Eq. (23.20) can be converted to functions
of z formally by letting z = eTs as was done in the previous chapter to obtain
the definition of a Z-transform. The result is

G,G,R(z) + G,U(z)
‘(‘)  = 1 + G(z) 1 + G(z)

(23.21)

where G(z) = GcGpGh(z)

The overbar  above a group of terms in Eq. (23.21),  such as G&J,  is useful
in reminding one that the functions of s corresponding to each term in the group
are multiplied together to form one function of s before the starred transform
or the equivalent Z-transform of the group of terms is taken. For example, one
cannot obtain G&J(z) by looking up the Z-transform of G,,(S)  and then looking
up the Z-transform of U(s) in tables and multiplying these two functions of z
together, i.e., it is wrong to write

UG,(z)  = U(z)G,(z) Wrong

The correct procedure is to obtain one function of s, written as G&l(s),  and to
use this combined function of s to look up its Z-transform. Although the overbar
is useful to remind one that the terms must be multiplied together before taking
the Z-transform, this convention is not always used in the literature or in this
book, for it is often difficult and inconvenient to place a bar above a group
of terms. For this reason, the overbar  will not be used in the equations follow-
ing this section. If a group of terms are multiplied together followed by the argu-
ment z, the overbar  above the terms will be understood. The examples to follow
should clear up this rather subtle, mysterious taking of a Z-transform of a group
of terms.

The two expressions on the right side of Eq. (23.21) may be said to contain
the transfer functions relating C to R and C to U. However, this is not strictly
true, for R cannot be separated from G,G,  as in the case of a continuous system.
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To clarify this important point, the expression for C(z) for a change in set point
only (i.e., U = 0) is

GcG,Rtz 1
‘(‘)  = 1 + G(z)

(23.22)

It is wrong to write

C(z)- G&k)
R(z) 1 + G(z)

Wrong

In other words, the term G,G$(z)  must be worked out for each R(s) to be
studied. A similar comment applies to the term G,V(z).  These subtle points in
the correct use of Eq. (23.21) can be made much clearer by the example shown
later.

Table Relating Z-lhnsform  Outputs
to Sampled-Data Systems
Obtaining the expression C(z) in Eq. (23.22) for the sampled:data block diagram
of Fig. 23.4 requires considerable effort. As we shall see in later chapters, other
sampled-data block diagrams occur for which an expression for C(z)  is needed.
In the literature (Tou, 1959),  one can find tables of various types of sampled-data
block diagrams with the corresponding expressions for C(z). A short table, which
will be useful later, is shown in Table 23.1. This table also lists the modified Z-
transform C(z  ,m),  which will be discussed in Chap. 25. (Notice that the overbar
is not used in this table.) It is important to know how to interpret the entries in
the table. For the diagram in Fig. 23.4, we see that item 2 in Table 23.1 applies.
For this case

(23.23)

The expression GR(z)  in Eq.  (23.23) is equal to G,G$(z)  in Fig. 23.4 and
GH(z)  is equal to GcGpGh(z).  Using these equivalent expressions for GR(z)
and GH(z),  we write directly from Table 23.1

G,G,Rtz  1
‘(‘)  = 1 + GcGpGh(z)

This agrees with Eq. (23.22).

Example 23.3. Closed-loop response. For the diagram shown in Fig. 23.4, let

Gp = l/(~s + 1) G, = K

The process is now equivalent to the sampled-data control of a first-order pro-
cess with proportional control. For this specific example, we obtain for G(s) =
GcG,G&)

G(s) =
K(l  - e-“)

=s (7s + 1)
K(1 - e-“)x

LS+$( I
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TABLE 23.1
Output Z-transfbrms  br sampled-data systems

Sampled-data system C(z)  and  C(z,  m)

6 .

c

c(z)  = G(z)R(z)
c(z,  m) = G(z,  m)R(z)

CR(z)
‘(‘) = 1 + GH(z)
c(z,  m) = RG(z,  m)

_ GH(z,  mW(d
1 + GH(z)

C(z)  =
G(z)JVz)

1 + GH(z)

G(z,  m)Wz)
‘(”  m, = 1 + GH(z)

C(z)  = GzU(z)
1 + GlG2Zf(z)

C(Z, m) = UG2(z, m)
_ UG2(z)GlGH(z, ml

1 + GlG2H(z)

Gl(z)G2(zW(z)
‘(‘) = 1 + GI(z)GzH(z)

cl(z)G2(z,  m)Wz)
c(zsm)  =  1  +  GI(z)GzH(z)

G2W)
‘(‘)  = 1 + Gl(z)G2H(z)

C(Z, m) = UG2(z9  ml
_ G~(z)uG~H(z)G~(z~  m)

I + G~If(z)Gl(z)
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G(s) may now be written as two terms:

G(s) = K
l/r (l/r)emTs

s[s + (l/T)] - s[s + (l/r)] 1 (23.25)

To obtain G(z)  for Eq. (23.25),  the Z-transform of each term on the right must be
found. The first term can be transformed easily by using the following transform
pair from Table 22.1:

a z 1 - eeaT! i--
S(S  + a>  ’ (Z  - ‘l)[z  - e-UT)

The second term can be transformed with the use of the following important theorem.

Theorem. If g(r) is Z-transformable and has the Z-transform G(z), then the Z-
transform of the delayed function g(t - n T) is given by

Z{g(t - nT)) = z--G(z) (23.26)

This theorem applies when the delay time nT  is an integral number of sampling
periods. This theorem applies only when g(t) = 0 for t < 0, a condition that will
always apply in this book. The proof of this theorem can be found in other mfer-
ences  (IOU,  1959). Note that this theorem is similar to the one for the transform of
a delayed continuous function (i.e., L{g(t - 7))  = e-rSG(s)).

Applying the transform pair and the theorem just given to the terms on the
right side of Eq. (23.25) gives

or

z
(

1 - e-T!~
1

z-lz
(

1 - e-T!~
1

G(z) = K  cz _ 1) (z - ,-T/T]  - K cz _ 1) (z _ ,-T/T)
(23.27)

G(z) =  Kz (1 - z-‘)(l  - e-nT)

(2. - l)(z  - e-“)
(23.28)

Simplifying gives

(23.29)

where b = ewTiT.

To obtain G,G,R(z)  for a unit-step change in R, we proceed as fokws:

G,GpR(s)  = K = K
117

S(TS + 1) s[s + (l/r)]
(23.30)

Taking the Z-transform.

G,G&z)  =
Kz(l  - b)

(z - l)(z - b)

For a unit-step change in R, Eq. (23.21) becomes

(23.31)

G&+R(z)
C(z) = 1 + G(z) =

Kz(1 - b)l(z  - l)(z - b)
1 + [K(l  - b)/(z  - b)]

(23.32)
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K(l - b)z
‘(‘) = (z - l)[z - b + K(1 - b)]

(23.33)

INVERSION. The inversion of C(z)  may be obtained by long division or by partial
fraction expansion. Using the latter method, we proceed as follows

C(z) K(l - b)- =
Z (z - l){z  - [b - K(1 - b)l)

or

C(z) K(l - b) A BPC
Z (z - l)(z - (Y)  = - +z - l Z-a!

(23.34)

(23.35)

where (Y  = b - K(l - b). Solving for the constants A and B gives A = Kl(1 +
K), B = -Kl(  1 + K). Inverting by means of the table of transforms gives

c(nT) = & (1” - (u”)  = & { 1 - [b - K(l - b)]“] (23.36)

Stab&y.  From the result given by Eq. (23.36),  the stability of this system can be
studied as follows.

For c(nZ’)  to converge, lb  - K(l - b)l  < 1

Note that b < 1 since b = eTT”  and T/T is positive.
The inequality may be written in two ways:

I. b - K(l - b) < 1

II. b-K(l-b)>-1

For I.: -b+K(l-b)>-1
K(l- b) > -1+ b

K > -(l - b)/(l - b)

or K > -1

Since K is always positive, this result is of no practical value.

For II.: b - K ( l - b ) > - 1

-b+K(l-b)<l

K(l - b) < (1 + b)

l + b
KC-

l - b
(requirement for stability) (23.37)

This is a useful result and shows how a sampled-data system differs from a contin-
uous system. For a continuous system, proportional control of a first-order system
is always stable. For the sampled-data case, them is a value of controller gain K,
above which the system goes unstable.

?hznsient  response. For this example, the transient response consists of connected
arcs of exponentials. A typical response is shown in Fig. 23.5. The sampled-data
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Ul t imate

curves FIGuRE  23-5

2T 3T 4T 5T t
Transient response of a sampled-data
system.

response, c(nT),  gives only values  of c(t) at sampling instants. The continuous
response c(t) is obtained from basic knowledge of the first-order system.

Offset. From Eq. (23.36),  one can see that for a stable system, c(m)  = K/(l +
K). This is the same result that would be obtained for a continuous system under
proportional control. In terms of offset, we have

Offset = r(w)  - c(m)  = 1 - Kl(1 + K) = l/(-l  + K)

This result should not be surprising, for once the transient terms have disappeared,
which is always the condition under which offset is determined, the sampled-data
system is equivalent to the continuous system.

SUMMARY
The methods used to obtain the response of open-loop and closed-loop sampled-
data systems are similar to those used for continuous systems. The block diagram
for a sampled-data system contains one or more sampling switches. For an open-
loop system, the response at sampling instants is obtained by expressing the Z-
transform of the output C(z) as the product of the pulse transfer function G(z) and
the Z-transform of the forcing function F(z) : C(z) = G(z)F(z).  This expression
is analogous to the one used for continuous systems: C(S)  = G(s)F(s).  The
inversion of C(z) can be obtained by (1) partial fraction expansion and use of a
table of Z-transforms or (2) by long division.

The method using partial fraction expansion gives an analytical result that
can be used to find the response at any sampling instant. The process of long
division must be continued until the particular output term of interest is reached;
for this reason long division is better suited for obtaining the response during
the first few sampling periods. Because of the sampling switches present in a
sampled-data system, obtaining the expression for the closed-loop response C(z)
requires considerable effort. To assist in this effort, a table relating Z-transform
outputs to a variety of closed-loop sampled-data configurations was presented.
The response of a sampled-data system containing a transport lag can be obtained
easily as an analytical  expression; this is in contrast to the difficulty one has for
continuous systems that contain transport lag.
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APPENDIX
23A

AI. Derivation of Eq. (23.3)
The basic definition of F*(s) given by Eq. (22.9) is

F’(s)  = ; 5 F(s + jko,)
k=-co

Replacing s by s + jnw,, where n is an integer, gives

F*(s + jnw,)  = $ 2 F(s + j(n  + k)o,)
kc-m

Let p = n + k, then the above equation becomes
m

F*(s  + jmo,)  = k 2 F(s + jcLwd
p=-cc

Since the limits on k am  UJ and -03, the limits on p am  the same. By the definition
of Eq. (22.9),  the term on the right is simply F*(S) and we may write

F*(s + jno,)  = F*(s)

which is Eq.  (23.3). We describe this relation by stating that F*(s) is periodic in
s with frequency w ,  .

AIL  Taking the Starred tiansform
of GcGpG&)C*(s)  in Eq. (23.18)
In obtaining the closed-loop transfer function for the system in Fig. 23.4,
we took the starred transform of G,G,G&)C*(s)  in Eq. (23.18) to get
G,G,Gh  *(s)C*(s).  An explanation of this step is as follows.

For convenience, let GcGpGh(s)  = Gi(s), Consider the block diagram in
Fig. 23.6 in which Gi(s)  operates on the sampled value of C, which is C*(s).
From this diagram, we write

Y(s)  = Gl(s)C*(s)

CM -+~~~T*  yN
FIGURE 23-6

--‘--  Yys) Taking the stamd transform of
G&l  =G&‘$,(s) T G,G,Gh(s)C*(s)  in Q.  (23.18).
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Taking the starred transform of both sides of this equation and using the definition
of a starred function given by Eq. (22.9) give

Y*(S) = $ f: Y(s  + jnw,) = f 5 Gl(s  + jnw,)C*(s  + jaws)
n=-co n=-03

From Eq. (23.3),  we can write

C*(s  + jnw,)  = C*(s)

therefore

f 5 Gl(s  + jno,)
n=-cc 1

The term in brackets, according to the definition of Eq. (22.9),  is G:(s).  We can
now write

Y*(s) = C*(s)G;(s)

Converting Gi to the original variables gives

Y*(s) = C*(s)G,G,G,,  *(s)

AIII. BASIC Program for Long Division
The BASIC program given in Fig. 23.7 is useful to invert a Z-transform by the
method of long division. To use the program, one must arrange the Z-transform
C(z)  in the form

C(z)  =
a0 + qz-’  + u*z-2 + *+a  umz-

1 + brz-’  + b2z-2  + ...  b,z-”
(23.38)

When the computer program is run, one enters the values of ua, a 1,  . . . , b 1,
h,  . . . , m, and n when requested by the program. One also enters the number
of terms desired in the long division. To illustrate the use of the program, we
shall do the long division that was done in Example 23.1. After introducing the
parameters of Example 23.1 into Eq. (23.11),  C(z) becomes

C(z)  =
1 + 2z-’  + 2-2

z - 0.368

To put this in the form of Eq. (23.38),  multiply numerator and denominator by
z -’ and the result is

C(z)  =
z-l  + 2z-* + 2-3

1 - 0.36&-’

From the numerator of this expression, we see that ua = 0, ur = 1, u2  = 2,
us = 1, and m = 3. From the denominator, we see that bl = -0.368 and
n = 1. Introducing these values into the sample run shown in Table 23.2 gives a
result that agrees with that of Example 23.1.
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5 DIM A(20),  B(20),  X(20),  D(20)
LO PRINT "Z-TRANSFORM INVERSION BY LONG DIVISION"
LS PRINT
20 PRINT "ORDER OF NUHERATIOR, H":  INPUT H
25 PRINT
30 PRINT "INPUT NUMERATOR COEFFICIENTS A OF THE FORM:"
'40 PRINT "AU + AL/Z**L  + A2/Z**2  + . . . + AH/Z**B"
50 FOR I = 0 TO 11
btl PRINT "COEFFICIENT", I: INPUT A(I)
70 NEXT I
75 PRINT
80 PRINT "ORDER OF DENOHINATOR,N": INPUT N
85 PRINT
90 PRINT "INPUT OF DENOMINATOR COEFFICIENTS,B, OF TRE  FORM:"
LOO  PRINT "I,  + BL/Z**L  + B2/Z**2  + . . . + BN/Z**N"
1LO  PRINT "NOTE THAT BO  = la"
I120  FOR I = L TO N
130  PRINT "COEFFICIENT", I: INPUT B(I)
I140  NEXT I
It'+2  PRINT
143  PRINT "BOW  MANY TERMS DO YOU WANT IN TiiE INVERSE FORE?"
I,45  PRINT "CO + CL/Z**1  + C2/Z**2  + . . . + CJ/Z**J"
147  INPUT N3
I,50  NL = N: IF H>N  TIiEN  NL=H
ZbO  FOR I = I TO N1
I170  D(I)  = A(I)
la80  IF I>N  TEEN B(I) = 0
190  IF I>H  THEN D(I) =O
200 NEXT I
210  D(NL+L)  = 0
220 IF A(O)  = 0 GOT0 270
230 X(O)  = A(O)
2'+0  FOR I = II TO N: D(I)  = D(I)  - X(O)*B(I):  NEXT I
250 X(1)  = D(l)
260 GOT0 280
270 X(O) = 0: X(L) = A(L)
280 PRINT X(O),"/Z**  0 +"
282 PRINT X(L),"/Z** L +"
288 FOR J = 2 TO N3
290  FOR K = II TO IL:  D(K) = D(K+L)  - X(J-L)*B(K):  NEXT K
300 X(J) = D(L)
3LO  PRINT X(J),"Z/**";J;"+"
320 NEXT J
330 END

FIGURE 23-7
BASIC program for long division.
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TABLE  23.2
Output from a BASIC program for long division

RUN
Z-TRANSFORH INVERSION BY LONG DIVISION
ORDER OF NUHERATOR,  I
? 3
INPUT NUMERATOR COEFFICIENTS A OF THE FORII:
A0 + AL/Z**L  + AZ/Z**2  + . . . +AU/Z**M
COEFFICIENT 0
? II
COEFFICIENT ll
? II
COEFFICIENT 2
? 2
COEFFICIENT 3
? 1
ORDER OF DENOHINATOR,N
? I
INPUT OF DENOMINATOR COEFFICIENTS, B, OF TEE FORM:
I + BL/Z**L  + B2/Z**2 + . . . + BN/Z**N
NOTE TRAT BO = I
COEFFICIENT In
? -.3b8
HOW MANY TERMS DO YOU WANT IN THE INVERSE FORM?
CO + CL/Z**L  + Ci?/Z**Z  + . . . + CJ/Z**J
? 5
0 /z**  Cl +
II /Z**  II +
2.3b8 /Z**  2 +
ll.a7ltr124 /z**  3 +
.b8Bb84 /Z**  II +
.25311357 /Z**  5 +
O k

PROBLEMS
23.1. (a) For the open-loop system shown in Fig. P23.1, determine c(nT) for R = s(t),

u(t), tu(t) when T = 1 and T = 0.5. Sketch the continuous response c(t) for
each disturbance.

(b) Repeat part a for the case in which the zero-order hold is removed.
Note: The complete solution to this problem requires the solution of 12 open-
loop problems.

c
FIGURE P23-1

23.2. For the sampled-data process in Fig. P23.2, determine
(4 C(z).
(b)  c(nT) for several values of n.
(c) Plot the continuous response, c(t).
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FIGURE P’23-2

23.3. Consider the transfer function

If the function X(t) shown in Fig. P23.3 is fed to an impulse sampler, which
is followed by Gh 1 , determine the output Y(t) . Present your results graphically. The
term Ghi  is called a first-order hold.

Oo 1 2 3 4 t FIGURE P23-3

23.4. For the sampled-data control system shown in Fig. P23.4, determine c(nT)  for
K = 1 and K = 2. Sketch the continuous response c(t). Determine the ultimate
controller gain.

z=l

23.5. For the sampled-data control system shown in Fig. P23.5, determine c(nT)  for
K = 0.2. Sketch the continuous response c(t).

FIGURE P23-5



CHAPTER

24
STABILITY

We have seen in Example 23.3 of the previous chapter on the proportional,
sampled-data control of a first-order system that the question of stability arises.
By solving the response c(H)  for this relatively easy problem [Eq. (23.36)]  we
were able to derive the conditions for stability [Eq. (23.37)].  Using this same ap-
proach for finding conditions for stability for higher-order processes can be quite
complicated. Fortunately, one may develop general rules of stability that resemble
those for continuous systems.

Consider the response of a sampled-data system to be of the form:

Fl(z) F2(z)
‘(‘)  = 1 + G(z) = (z  - zl)(z - z2) ... (z - zd

(24.1)

To obtain the response c(S),  we may expand the right side by the method of
partial fractions to obtain

(24.2)

In anticipation of an entry in the table of transform pairs, each term within the
parentheses of Eq. (24.2) is written as z/(z  - zJ.  The term z-l,  which has been
placed outside the parentheses to balance the z placed inside, will simply shift the
time response by T units and in no way affect the conclusion on stability to be
given in the following discussion.

For the moment, consider the roots z 1,  ~2,  . . . to be real. We have seen
from previous examples that the inverse of a typical term z/(z  - z,i) is:

2-1 .-L
i IZ -Zi

= z;

376

(24.3)
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For this term to contribute a bounded response to c(nT)  requires that (zil < 1.
We shall now extend this special case of real roots, which has been presented to
introduce the subject, to the general case of roots being complex.

GENERAL CONDITIONS FOR STABILITY

The general conditions for stability of a continuous system are that the roots of the
characteristic equation fall in the left half of the complex plane. Before the sampled
signal C*(S) is changed to the form C(z) by introducing the transformation z =
eTS,  the characteristic equation of the sampled system is

1 + G*(s) = 0

We may apply the general stability criterion and require that all roots of the
characteristic equation be in the left half of the s-plane. When the characteristic
equation expressed in the s-domain is transformed to the z-domain through the
transformation z = eTs,  we get

1 + G(z) = 0

Consider a typical stable root of the characteristic equation to have the value

s = --a+ jw where u > 0

This root is shown in the complex s-plane in Fig. 24.1. By applying the transfor-
mation z = eTS  , we may write

z = eTs  = e-TaejoT

This expression for z,,  a complex number, is of the form

z = Mej' or z = IZI  42

where M or IzI is the magnitude of the complex number and 8 or &z is the angle
associated with the complex number.

Since cr > 0, emTa < 1
therefore IzI < 1

In terms of the complex z-plane, this result states that stability for a sampled-data
control system requires that the roots of the characteristic equation 1 + G(z) = 0
fall within the unit circle as shown in Fig. 24.2.

i
I -I

s -plane
Se---  ”
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j z-plane

radius = 1
FIGURE 24-2

I Region of stability in the z-plane.

Routh Test
The Routh test, which is often used to examine the roots of the characteristic
equation of a continuous system (see Chap. 14),  may also be used to examine
the roots of the characteristic equation of a sampled-data system. Recall that the
Routh test detects the presence of roots in the right half plane. Since the crite-
rion of stability of a sampled-data system requites that all roots fall within the
unit circle of the z-plane, one must first apply a transformation that will map
the inside of the unit circle of the z-plane into the left half of the w-plane. One
can then apply the Routh test to discover roots in the right half of the w-plane,
and if none are found, we know that the roots of the characteristic equation 1 +
G(z) = 0 fall within the unit circle and that fhe sampled-data control system is
stable.

A transformation that will map the inside of the unit circle of the z-plane
into the left half of the w-plane is

w + lz=-
w - l (24.4)

This transformation is called the bilinear transformation. The regions involving
the transformation am shown in Fig. 24.3. An alternate transformation is

1+w
z= l-w (24.5)

The reader should check to see that the transformations given by Eqs. (24.4) and
(24.5) do what is claimed. For example, if w = - 1 + j , a point in the left half
of the w-plane, then Eq. (24.4) becomes

Multiplying numerator
-2 + j, gives

j - 2 - j- -
‘=-2+j-2-j

z. =
- l + j + l =A-
- l + j - 1 -2+j

and denominator by -2 - j , the complex conjugate of

l-2j 1c - c - -
5 5

a point inside the unit circle
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FIGURE  24-3
Transformation from the z-plane to the w-plane.

A general proof that the transformation maps the inside of the unit circle into the
left half plane is given here. Solving Eq. (24.4) for w gives

z+l
w=-

z - l

Let z = x + jy. Equation (24.6) becomes

w=  x+fY+l= (x+l)+jy
x + j y - 1 (x - 1)  + jY

or

(x + 1) + jy (x - 1) - jy
w = (x - 1) + jy (X - 1) - jy

(24.6)

(24.7)

(24.8)

Multiplying out the factors in the numerator and the denominator gives, after
algebraic rearrangement

x2 + y2 - 1 2Y
w = (x - 1)2  + y2 - j (x - 1)2  + y2

We may now use the analytical expression for a unit circle, x 2 + y 2 = 1, to
complete the proof. If a point is inside the unit circle of the z-plane,

lzl<l a n d x2 + y2 < 1

Introducing this inequality into Eq. (24.9) leads to the result that the real part of
w is negative; thus:

Re{w} < 0 (24.10)

Since this is equivalent to stating that the values of w fall in the left half plane,
we have completed the general proof.
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Root Locus

One may determine the stability of a sampled-data system by plotting the root
locus diagram for the characteristic equation. In this case, there is no need to
use a transformation, as is needed in applying the Routh test. In general, the
open-loop transfer function for the sampled-data system can be placed in the form

G(z)  = K (z - Vl>(Z  - v2).  .  .

(z - Pl>(Z  - P2)  * * *
(24.11)

where ~1,  ~2,.  . . are the zeros of the open-loop transfer function and p 1, ~2,  . . .
are the poles of the open-loop transfer function.

To obtain the root locus plot for 1 + G(z) = 0, one places the open-loop
zeros and poles on the complex plane and applies the angle criterion used in root
locus construction. The stability boundary occurs when one of the branches of
the root locus diagram crosses the unit circle. To find the gain K at the stability
boundary, one applies the magnitude criterion of root locus construction. (See
Chap. 15.)

Example 24.1. The stability of proportional control of a first-order process will be
examined. This same problem was presented as Example 23.3. Both the Routh test
and the root locus method will be used. The system is shown in Fig. 24.4. For this
system, we have shown in Eq.  (23.29) that

G(z) = KS

where b = emT”.

Using the transformation given by Eq.  (24.4), we obtain for 1 + G(z) = 0

1+ K(l- b)  = 0
w + l
- - b
w - l

(24.12)

or

1 +  KU -  b)(w  -  1)  =  o

w + 1 - b(w - 1)
(24.13)

Rearranging this result in polynomial form for applying the Routh test gives

[(K + l)(l - b)]w + [(l + b) - K(l - b)] = 0 (24.14)
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The Routh array for this expression becomes

R o w  1 t e r m

1 (K + l)(l - b)

2 (1 + b) - K(l - b)

Since b = emT/r  is always positive and less than one and K is positive, the first
element in the array is positive. For stability, the Routh test requires that all elements
of the first column be positive. Therefore,

(1 + b) - K(l - b) > 0

OI

1+ b > K(l- b)

or

l + b
KC-l - b for stability

This is the same result given by Rq.  (23.37),  which was obtained from an expression
for c(nT>.

We shall now use the root locus method on the same example. For this simple
problem, there is only one pole of the open-loop transfer function, G(z), which is
located at b as shown in Fig. 24.5. The root locus consists of one branch that moves
from the pole at b along the real axis to the left. The intersection of this branch
with the unit circle at z = - 1 gives us the stability boundary. Using the magnitude
criterion of root locus construction gives

KU-b)  1-=

1% - Pll

We can obtain the value of K at the stability boundary by solving for K, thus

K ~ hi-Pll  _ l+b
l - b l - b

z-plane

FIGURE 24-5
Root locus plot for Example 24.1.
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Since the root locus branch moves to the left with increase of K, we see that

l + b
Kc-

l - b
for stability

For this simple example, the root locus method is easier, for one does not need to
use a transformation and the root locus diagram is very simple. However, for higher-
order systems, the apparent advantage of the root locus method over the Routh test
is lost. To appreciate the details of applying the stability criterion to sampled-data
systems, the reader is encouraged to work a few of the more complex problems at
the end of this chapter.

Other methods for determining stability of sampled-data systems include the
Schur-Cohn criterion and the Jury criterion (see Jury, 1964 and Tou, 1959). The
Jury criterion is a simplification of the Schur-Cohn criterion. These methods, which
can be applied directly to the characteristic equation written in the z-domain, can
detect roots outside the unit circle of the z-plane. Since these methods require the
evaluation of high-order determinants, they are limited to simple systems.

S U M M A R Y

The presence of sampling in a control system contributes to instability. The crite-
rion for stability of a sampled-data system requires that the roots of the character-
istic equation, 1 + G(z) = 0, fall within the unit circle of the complex z-plane.
Based on this criterion, two methods were developed to determine stability: (a)
the modified Routh test and (b) the root locus method. To use the Routh test, one
must first apply the bilinear transformation, which maps the inside of the unit
circle into the left half of the w-plane. The usual rules of the Routh test am then
applied to the transformed characteristic equation. Using the root lqcus method
is simpler, for one simply constructs the root locus diagram from the poles and
zeroes of the open-loop transfer function G(z). When a branch of the root locus
diagram crosses the unit circle, the system becomes unstable. It is of interest
to note that systems having transport lag can be analyzed easily for stability in
sampled-data systems by either the modified Routh test or the root locus method;
this was not the case for continuous systems having transport lag.

PROBLEMS

24.1. For the system shown in Fig. P23.5, determine the ultimate gain by use of the
Routh test and by use of the root locus method.

24.2. For the control system shown in Fig. P24.2, determine
(a) an expression for C(z) when a unit-step change occurs in U,  R remaining 0.
(b) the stability criteria for the control system.
(c) plot the continuous response c(t) for at least a period of time equal to 2T.

Obtain this information from basic knowledge of first-order systems.
Note: Clamping is not present in this system, for them is no zero-order hold in the
block diagram.
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FIGURE P24-2

24.3. The sampled-data control system shown in Fig. P24.3 contains a first-order hold,
for which the transfer function is

G
hl

= (1 + Ts)  1 - f?-Ts  *
T i is

(a)  Determine G(z)  for the closed-loop response.
(b) Determine the value of K for which the closed-loop response is on the verge of

instability by means of the root locus method. Sketch the root locus diagram.
(c) If a zero-order hold were used in place of the first-order hold, what would be

the value of K for the system to be on the verge of instability?

FIGURE P2A-3

24.4. One can show that for the sampled-data system in Fig. P24.4

G(z)  =
KI(Z  + a>
z(z - b)

where CY = 0.517, b = 0.607, K1  is proportional to K.

Draw accurately the root-locus diagram and from it determine the ultimate value of
K, above which the system is unstable.

K

I-~-Ts \
s T = l

FIGURE P24-4
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The inversion of the Z-transform C(z)  gives information about c(t) only at sam-
pling instants. This, of course, is a result of introducing the sampling switch. The
“simplicity” of the mathematics of Z-transforms must be paid for by the limited
information about c(t). For some processes, knowing the response at sampling
instants is quite sufficient. However, if one wants information between sampling
instants (intersample information, as it is called), a procedure other than the use
of Z-transforms is required.

One method, which can be very tedious except for first-order processes,
is to compute the continuous response c(t) by solving the differential equations
describing the process. If one were to go through this much effort, there would
be little reason to use Z-transforms in the first place.

Another method for finding intersample information is to use the modified
Z-transform. This method is nearly as easy to use as the ordinary Z-transform and
gives the intersample information about the response at any desired time between
sampling instants.

Another reason for introducing the modified Z-transform is to have a method
for obtaining the pulse transfer function of a system that includes a transport
lag (eeTS) for which 7 is not equal to an integral number of sampling periods
(7 f; nT).  The development of such a pulse transfer function will be described
in the next chapter.

384
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DEVELOPMENT OF MODIFIED
Z-TRANSFORM
Consider the process shown in Fig. 25.1 in which a fictitious delay e -hTs  has
been placed after the block G(s). The value of A is between 0 and 1. The use
of ordinary Z-transforms will give c(nT),  which is obtained by inverting C(z).
From Eq. (23.6),  C(z) can be found quite simply from the expression:

C(z) = G(z)F(z) (25.1)

To obtain c(t) at times other than sampling instants, c(t) is delayed (or translated)
by an amount AT before sampling. The choice of A gives the desired intersample
value of c(t).

Before developing the definition of the modified Z-transform, Fig. 25.2
provides a simple example that will clarify the timing of signals in Fig. 25.1. In
Fig. 25.2 f(t) = u(t), a unit-step function, G(s) = l/(s + l), and A = 0.7.
By studying Fig. 25.2, one can see the nature of the signal at each position in
the diagram. Notice that the continuous signal c*(t)  from the delay block is the
response c(t) shifted by 0.7T  to the right. The sampled response c:(t)  consists
of a train of impulses; the magnitudes of which equal the values of c(t) at 0.3T
into each sampling period. As will be shown later c~(nT)  gives the intersample
information that is provided by the modified Z-transform.

We may now turn to the general development of the modified Z-transform.
From Fig. 25.1, we may write

CA(S)  = GA(~)F*@) (25.2)

where GA(S)  = G(s)edhTS

Taking the starred transform of this expression:

C;(s)  = G;(s)F*(s) (25.3)

The basis for performing this last step has been discussed in detail in connection
with Eq. (23.5).

To develop the modified Z-transform, consider separately the processing of
c(t) as shown in Fig. 25.3. To find the Z-transform C*(z) corresponding to C:(S),

f(“) , f*(t)
F(s)  T F*(s) G(s) c(t)

I C(s)
F(z) I

FIGURE 25-1
Development of modified Z-transform.

i-------l
O<h<l C,(z)  = C(z,m)
m=l-h
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'0 0.7T 1.7T 2.7T

2 c*(r)

1

b

44

1T 2T 3T 4T t
FIGURE 25-2
Example to illustrate the development of the modified Z-transform (A = 0.7 or m = 0.3).

we may use the definition of Eq. (22.8) to write

CA(Z) = 2 c(nT - AT)z-” (25.4)
n=O

Since we work only with functions of t for which the function is zero for
t < 0, we have for n = 0

c(0  - AT) = c( -AT)  =  0
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Equation (25.4) may now be written

CA(Z) = Tc(nT  - hT)z-”
n=l

(25.5)

If we let m  = 1 - A, we may write for the argument of c in Eq. (25.5)

nT - AT = nT - (1 - m)T = (n - l)T + mT (25.6)

Equation (25.5) may now be written

CA(Z) = 2 c[(n  - l)T + mT]z-”
n=l

(25.7)

If we let n’ = n - 1, Eq. (25.7) may be written

CA(Z) = 5 c[(n’  + ~)T]z-‘z-~’
n’=O

(25.8)

or

CA(Z) = z-l 2 c[(n’  + m)T]z-“’ (25.9)
n’=O

This last expression is the definition of the modified Z-transform. Replacing the
index n ’ with n, to avoid an awkward symbol in the definition, we have the
expression for the modified Z-transform:

CA(Z)  = c(z,m)  = z-l 2c[(n  + m)T]z-” (25.10)
n=O

The symbol C(z,m)  has replaced CA(Z)  and m  = 1 - A.
Tables of transform pairs have been developed that relate a function f(t) to

its modified Z-transform. Table 22.1 provides the modified Z-transforms for the
functions of t listed in the table.

PULSE TRANSFER FUNCTION
FOR MODIFIED Z-TRANSFORM
Returning to Eq. (25.3),  we may write

c;(s)  = G;W’*W (25.11)

Writing this in terms of Z-transforms, we have

CA(z)  = GA(Z)F(Z) (25.12)

The convention has been established to replace the Z-transform of the delayed
function, such as C,+(Z)  in Eq. (25.12),  with the symbol C(z,m) where m is
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related to A by the relation m  = 1 - A. Changing the subscripted symbols in Eq.
(25.12) according to this convention gives the equivalent expression

C(z,m) = .G(z,m)F(z) (25.13)

where G(z  ,m)  is the Z-transform corresponding to GA(S).  Remember that GA(S)
is simply the transfer function for the process G(s) multiplied by the transfer
function for the fictitious delay; thus:

GA(s)  = G(s)~-*‘~ (25.14)

To find G(z. ,m)  one may refer to a table of transforms and find the entry G(z  ,m)
corresponding to the desired G(s).

SUMMARY OF USE OF THE MODIFIED Z-TRANSFORM. To find the output
of the block diagram in Fig. 25.4 at times other than sampling instants, one uses
the modified Z-transform and writes

C(z,m) = G(z,m)F(z) (25.15)

It should be realized that C (z  , m) is simply a Z-transform and that it can be inverted
by the same procedures used for inverting ordinary Z-transforms. Furthermore,
the inversion gives information about the response only at sampling instants. The
result from the inversion of the modified Z-transform gives the values of c(t)
between sampling instants. By choosing m between 0 and 1, one can obtain the
values of c(t) at any desired time within the sampling intervals.

For convenience, one may apply the following rule to determine the effect
of the size of m on the time into the sampling intervals.

Rule. Inversion of C (z , m) gives a response that is equivalent to stepping back one
sampling period in c(t)  and advancing mT units of time. Thus, for nz = 1, there is
no delay and the result is the same as that obtained from the ordinary Z-transform.
This can be seen from the fact that A = 1 - m = 1 - 1 = 0. On the other extreme,
for m = 0, one has a delay that approaches a full sampling period.

The system presented earlier in Fig. 25.2 for the purpose of explaining the
timing of the various signals will now be worked as an example using the method
just discussed.

Example 25.1. Obtain by means of ordinary and modified Z-transforms the response
for the system shown in Fig. 25.5. Determine the response c(t) at sampling instants
and at times positioned 0.3T from the beginning of sampling instants.

I , c*(r)--A ----- FIGURE 25-4
T c*(s) Open-loop sampled-data system.
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Using ordinary Z-transforms, one obtains:

C(z)  = G(z)F(z)

From the table of transforms,

F(z) = 2 (25.17)

(25.16)

Introducing these expressions into Eq. (25.16) gives

1C(z) = ;,  _ .&  5 = - Z2
7  (z - e-T’*)(z - 1)

(25.18)

We next determine the intersample response by using the modified Z-transform
as expressed by Eql  (25.13). From the table of transforms, we obtain for G(z ,m)

G(z m) = i e-mT’T
,- z _  e-T/r (25.19)

C(z,m)  then becomes

z
TZ - e-T/Tz - 1

(25.20)

Inversion of C(z). The inversion of C(z) from Eq. (25.18) may be obtained by
the method of partial fraction expansion, which has been discussed previously.
The result is:

lkrCW)  = (1 _ b)(1 - b”f’)

where b = eeTi7

Introducing the parameters (T  = r = 1) for this example gives

1
c(nT) = (1 _ o.368)(1 - 0.368”+‘)

(25.21)

(25.22)

Inversion of C(z, m). The inversion of C(z ,m) is obtained in exactly the same
manner as the inversion of C(z). It should be remembered that C(z ,m) is simply
a Z-transform of the output of a process in which some delay has been introduced.
We may use either the method of long division or the method of partial fraction
expansion to invert C(z ,m). Using the latter, we proceed as follows

C(z,m)
[zem;',7] = (z - b)(z  - 1)

' = A + 5 (25.23z - b

where b = ewT/“;
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Evaluating A and B gives A = - l/( 1 - b)  and B = l/( 1 - b), therefore

I (25.24)

From the table of transforms (Table 22.1),  Eq. (25.24) becomes

CA(C) = s(l  - bn) (25.25)

Using the parameters of this example, we get

CA(C) = 1 ‘;“$8(l  - 0.368”)

Note that

c~(nT)  =  e -O.3c[(n  - l)T]

This result is to be expected for this process, i.e., the intersample value is a
constant fraction, e -m, of the peak value, which occurred at the previous sampling
instant.

CLOSED-LOOP INTERSAMPLE RESPONSE
Consider the following closed-loop system in Fig. 25.6, which was discussed in
Chap. 23. If C(z) for this system is inverted, we obtain values of the response
c(t) at sampling instants, c(nT).  To obtain information about c(t) at intersample
positions, we may insert in the loop e -hTs  and ehTs  as shown in Fig. 25.7. This
artificial insertion of lag and lead does not alter the system, but provides a means
for calculating the desired information, c,+(t).

For simplicity, consider only the case of set-point disturbance. If load dis-
turbance is also present, the same approach to be used here can be applied.
From Fig. 25.7, we can write directly

CA(S) = RG,G,Gd(s)  - C*(s)GhG,G,Gd(s) (25.26)

where Gd(S)  = emAT’.

Taking the starred transform of both sides of this equation gives

C;(s) = RG,G,G;(s)  - C*(s)GhG,G,G;(s) (25.27)
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FIGURE 25-7
Modified closed-loop system for obtaining intersample information.

From Eq. (23.19) we may write for only a set-point disturbance:

C*(s) = RG,G;(s)  - G,G,G;(s)C*(s)

Solving for C*(S) gives

c*(s)  = RGcG;W
1 + G,G,G;(s)

Introducing C*(S) from Eq. (25.28) into Eq. (25.27) gives

(25.28)

C;(s) = RG,G,GL;(s) -
RGG;(s)

1 + G,G,G;(s)
WW,‘$W (25.29)

Expressing this as a modified Z-transform, we obtain

c(z, m) = fKW,(z& -
RG,G,(z)GdW,(z~~)

1 + GcGpGh(z)
(25.30)

In going from Eq. (25.29) to Eq. (25.30),  any symbol with a subscript h or any
group of transfer functions containing Gd  (the transport lag e -h*s)  is converted
to the modified Z-transform symbol according to our previous discussion.

In using this last equation, one must calculate the terms on the right side
carefully. For example, to find GhG,G,(z,m)  one first obtains GhG,G,(s),  which
is obtained by multiplying together the individual transfer functions. One then
obtains the desired result from a table of modified Z-transforms.

Table 23.1 gives the modified Z-transform outputs C(z  ,m)  for some
sampled-data systems of interest in this book. The modified Z-transform output
given by Eq. (25.30) for Fig. 25.6 corresponds to item 2 in Table 23.1.

SUMMARY
The modified Z-transform is needed to obtain the response of a sampled-data
system at intersample positions. It is also needed to obtain the pulse transfer
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function of a system containing transport lag (e -“) for which T  is not an integral
number of sampling periods. It should be remembered that  a modified Z-transform
is simply a Z-transform of a function in which a transport lag (e -hTs)  has been
included. The  inversion of a modified Z-transform is obtained in the  same manner
as the inversion of an ordinary Z-transform, by long division or by use of partial
fraction expansion.

PROBLEMS
25.1.

25.2.

25.3.

For the control system shown in Problem P23.4, determine the response between
sampling for the case m = 0.4 by use of the modified Z-transform.
For the process shown in Fig. P25.2, determine Y(z). By means of long division,
determine Y(t) for t = 0, 1, 2, 3, 4, and 5.

(a) For the control system shown in Fig. P25.3, obtain a general expression for
C(z)  for the case where R = 0 (no set-point change) in terms of G 1,  G2, and U.

(b) One can show that for R = 0 and U = l/s that C(z,m  = 0.3) = 0.2592  -‘+
0.587~-~ + 0.556~-~ + . . . .

From this result and any other information you wish to use, determine if
possible the values of C at the following times: 0,0.3,0.5,0.7,  1 .O, 1.3, 1.5, 1.7,
2.0, 2.3, and 3.0. Present your  results in a table.

FIGURE P25-3
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26
SAMPLED-DATA

CONTROL
OF A

FIRST-ORDER
PROCESS

WITH
TRANSPORT

LAG

The tools developed in the previous chapters for sampled-data systems will now
be applied to a model found to fit a large class of systems in chemical processing.
This model consists of a first-order process with transport lag (or delay). The
transfer function may be written

G,(s)  = s (26.1)

where T is the time constant and UT is the transport lag parameter (a is a positive
number). Consider the sampled-data control system shown in Fig. 26.1 in which
this transfer function is used as a model of the process. In this discussion, the
hold will be a zero-order hold for which the transfer function is

1
G&)  = $1  - e -Ts ) (26.2)

Recall that the combination of the sampling switch and the zero-order hold pro-
vides clamping. We shall take the control action to be proportional, for which

G, =  K (26.3)

393
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-an
Gc(s) e

7s+l c

I l!lbUla  L- - - - - -  -6-1
Sampled-da ta control of a first-
ndl=r  mfrtl=r-_--_ IJ  ,,.n with transport lag.

For the case of no transport lag (a = 0), the proportional control of this
process was discussed in Chap. 23. As will be shown, the higher the value of a,
the higher the order of the characteristic equation for the closed-loop system.

We shall consider a number of cases that are based on the size of a. For this
purpose, let

nT < UT  5  (n + l)T (26.4)

where n = 0, 1, 2, 3, . . .

For convenience in obtaining G(z), ur  may be written as follows:

UT = nT + (UT - nT) (26.5)

In this form ur  is equal to an integral number of sampling periods (nT)  plus a
fraction of a sampling period [i.e., (ur  - nT)  5 T]. Using this expression for
UT in Eq. (26. l), the open-loop transfer function becomes

G(s) = K(l - e-r’)Pr’
e-(aT-nT)s

S(TS + 1)
(26.6)

Using the theorem on translation in Chap. 23 [Eq. (23.26)],  we may write G(z)
a s

G(z)  = KU - z-9

Z"
z { $y+;;} (26.7)

Note that the expression within braces is equivalent to delaying the response from
l/[S(TS  + l)] by (U T - n T). We may apply the concepts used in developing the
modified Z-transform to find the Z-transform of the expression within braces in
Eq. (26.7) by equating (UT - nT)  to AT and recalling that m = 1 - A. This leads
t o

AT = UT  - nT

m  =  l - A =  I--a$+n

Equation (26.7) may now be written

(26.8)

G(z) = KC1 - z-9
Z” zm(  S(TS1+  l)}

(26.9)
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From the table of modified Z-transforms (Table 22. l), we obtain

G(z)  = KU  - z-9 1 exp[-$(l  - y + n)T]- -
Z” z - l z - e-T/r

I
(26.10)

Rearranging this expression gives

K(z - 1)
G(z)  = zn+l 1

where d = exp[a  - (n + ~)T/T]  and b = e-T’7

The characteristic equation for the closed-loop response may be written

1 + G(z) = 0

or

1 + Kk.
-

1)
1 d

- - -zn+l z - l  z - b
1 = 0

(26.11)

(26.12)

or

Z
n+2  _ bZnfl + K(l - d)z + K(d - b) = 0 (26.13)

Note that the order of the characteristic equation increases if (1) the delay time a r
is increased for a fixed sampling period T;  (2) the sampling rate increases (lower
7’)  for a fixed delay time.

STABILITY
The stability of the sampled-data system represented by Eq.  (26.13) can be ex-
amined by applying the Routh test as discussed in Chap. 24. As the order of
the characteristic equation increases, the effort involved in determining stability
criteria greatly increases. A few cases corresponding to various values of n in Eq.
(26.13) are presented here.

Case 1: n = 0
For this case, the delay is less than one sampling period, i.e.,

O<aTI  T

The characteristic equation given by IQ. (26.13) becomes

z2 + [K(l - d) - b]z - K(b - d) = 0

For convenience, this may be written

z2+yz-a=0

where y = [K(l - d) - b] and (Y = K(b - d).

(26.14)

(26.15)
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Applying the bilinear transformation given by Eq. (24.4) to Eq.(26.15)  gives

(w + 1)2 w + 1
(w - 1)2  +

wy-a  = o (26.16)

After algebraic rearrangement, one obtains

w2(1  + y - a) + w[2(1  + (I)]  + 1 - y - (Y  = 0

Replacing y by K(l - d) - b and (Y  by K(b - d) gives

w*[l-b+K(l-b)]+2w[l+K(b-d)]+l-[K(l-d)-b+K(b-d)]  =  0

or

w*(l  - b)(l + K) + 2w[l  + K(b - d)] + 1 - [K(l - d) - b + K(b - d)] = 0

The coefficient of w*  is positive since b = edT” is always positive and less than
one. For stability, the Routh test requires that all coefficients be positive; therefore

1 + K(b - d) > 0

and

1 + b - K(l + b - 2d) > 0

These inequalities may be rewritten

1
KC-

d - b
(26.17)

(26.18)

Both of these inequalities must be satisfied simultaneously. The best way to un-
derstand the result is to plot the stability boundaries as shown in Fig. 26.2 where
the ultimate gain K, is plotted as a function of a. Recall that d is a function of
u as shown under Eq. (26.11). For stability, K must fall under the boundary as
indicated in the figure. One can see that K, reaches a maximum at a max in Fig.
26.2. The value of amax is determined by the intersection of the two constraints,
which leads to

exp  (hd =
(1 + b)*

b(3 + b)

For the value of T/T of 0.8 used in Fig. 26.2, one can compute that a ,,,=  = 0.304.
Figure 26.2 shows that up to a certain point, adding delay time to a system

with T/r = 0.8 increases the ultimate gain. One suggested design criterion is to
set K/K,, = 0.5. The assumption is made that the “relative stability” of the loop
is constant, for constant K/K,. This would imply for this particular example that
adding delay time to the loop up to a = 0.304 will be beneficial, since increas-
ing K gives less steady-state offset and also faster system response. However, the
relative stability of the sampled-data system does not remain the same for con-
stant K/K,. Figure 26.3 illustrates this point. The response of the system to a unit-
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KU

-7i FIGURE 26-2
Stability boundary of a sampleddata system as a
function of delay time.

step change in set point is shown for various amounts of delay time in the loop.
Although K/K,, is maintained at 0.5, increasing the delay time toward amax has
definitely destabilized the system. Hence, use of constant K/K,, is not a good
design rule for sampled-data systems and the conclusion that control can be im-
proved by adding delay time is false.

Case 2: n = 1
For this case, T C UT  I: 2T

One can see from Eq.  (26.13) that the order of the characteristic equation is three.
Using the same stability analysis as for the case for n = 0, one can show that
stability requires that the following inequalities hold simultaneously

(2d + 1 - 3b)K < 3 - b (26.19)

(2d - 1 - b)K < 1 + b (26.20)
(d-b)2K2  + (1 - b)(l f b - d)K - 1 < 0 (26.21)

2.07

TIT- 0.6 KIK,, = 0.5

FIGURE%-3
I I I I I I I I Closed-loop transient response of sampled-

0 1 2 3 4 5 6 7 6th data system for a unit s tep in s e t point.
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The stability boundaries represented by these three equations have been plotted by
Mosler et al. (1966). The stability constraints for the case of n = 2, which require
four inequalities, also may be found in Mosler (1966). This demonstrates that as
the value of transport lag (UT)  increases relative to a fixed sampling period T,
the order of the characteristic equation increases and the stability criteria become
more and more complex.

TRANSIENT RESPONSE OF CLOSED-LOOP
SAMPLED-DATA SYSTEMS
We shall consider the transient response for the system shown in Fig. 26.1 for a
step change in set point. For this particular disturbance, the block diagram may
be drawn as shown in Fig. 26.4. For the special case of a step change in set point,
the sampling switch and the hold in Fig. 26.1 can be placed in the forward loop
of Fig. 26.4. For a step change in R occurring just before a sampling instant, it
does not matter whether the sampling occurs before the comparator or after the
comparator. The reason for redrawing the block diagram is that the expression for
C(z)  for Fig. 26.4 is simpler than the expression for Fig. 26.. 1.

Using the method described in Chap. 23, one can obtain for C(z)

(26.22)

where G(z) = G,G,Gh(z)

The expression for C(z ,m)  is

C(z*m) =
G(zmYW

1 + G(z) (26.23)

Equations (26.22) and (26.23) can also be found from Table 23.1.
If one were to obtain expressions for C(z) and C(z  ,m)  for the system in

Fig. 26.1, the result would be as follows:

(26.24)

and

c(z,m)  = RG,G,(zm)  -
G(z,mWcG,(z)

1 + G(z)
(26.25)

FIGURE 26-4
Rearranged block diagram.
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If one were to use Eq. (26.24) or Eq. (26.25) for a step change in R,
the result for c(nT)  and c,&T)  would be, of course, the same as that obtained
using Eqs. (26.22) and (26.23); these latter two are simpler than Eqs. (26.24) and
(26.25).

The diagram in Fig. 26.4 may replace the diagram in Fig. 26.1 for the more
general set-point function r(t), which is piecewise constant and where changes
in r occur just before sampling instants. This more general function is a stair-step
function.

The transient response for the system shown in Fig. 26.4 will be considered
in detail for two cases:

Case I: no transport delay, i.e., a = 0
Case II: 0 < UT I T, i.e., it =  0

The results can be used to establish design criteria.

Case I: No lkansport  Lag
For this case, one can-show that Eq. (26.22) becomes

C(z) K(l - b)-
R(z) z+K(l-b)-b

where b = e-“’

For a unit-step change in set point, R = z/(z - 1) and the response is expressed
by

C(z)  =
K(l - b)z

(z  - l)[z + K(l - b) - bl

Inverting this expression gives

c(nT)  = A(1 - [b - K(l - b)]“} II  = 0,1,2,... (26.26)

This result was derived in Chap. 23 [Eq. (23.36)]  and is presented again for
convenience in developing design criteria. The transient response for a specific
set of parameters, shown in Fig. 26.5, consists of arcs of exponential functions
that intersect at sampling instants.

It is possible to make the loop gain of the system (K)  so small that the
response is overdamped. In fact, the value of K, below which the response is
overdamped, can be found by examining Eq. (26.26). When the expression in
brackets, b - K( 1 - b), is greater than 0, the system no longer oscillates; therefore,
we may write

b - K(l- b) > 0
or

b
K-C-

l - b
for overdamped response (26.27)

An overdamped response is also shown in Fig. 26.5.
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An overdamped response for a closed-loop system is usually considered too
sluggish; consequently, the design criteria to be developed will be based on the
underdamped response, such as the one shown in Fig. 26.5.

Since the peaks (maximum and minimum) of the underdamped response
occur at sampling instants, Eq. (26.26) may be used to compute overshoot and
decay ratio. For a stable response, the ultimate value of c(t) is

This result, which is the same as that for a continuous proportional control system,
should not be surprising if one recalls that the system’s steady state is determined
by steady-state relationships that are the same for both sampled-data control and
continuous control.

The first peak in the direction of set-point change occurs at t = T and the
second peak in the same direction occurs at t = 3T.  From this information one
may compute from Eq. (26.26) the fractional overshoot and the decay ratio; the
results are as follows:

Fractional overshoot = 40 - ~(~1
cCw)

= K(l - b)  - b (26.29)

Decay ratio =
c(3T) - c(a)

c(T) - cP9
= [K(l - b) - b12 (26.30)

It is interesting to note that the relationship between decay ratio and fractional
overshoot for the first-order, underdamped sampled system is the same as that for
the second-order, underdamped continuous system, namely:

Decay ratio = (fractional overshoot)2 (26.31)

For a decay ratio (Ye, where 0 < (Y  < 1, the loop gain may be computed
from Eq. (26.29) to be

c(r)  for K= 1.72 (underdamped)

2c(  1) forK=  0.2 (overdamped)

0 1 2 3 4

T=l
z =I.25T/z= 0.8 FIGURE 26-5

Transient  response of a first-order, sampled-
5 6 r data system (no transport lag).
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For any choice of sampling rate, one may determine from Eq.(26.32)  the loop
gain required for a desired decay ratio. Increasing the sampling rate (lower T)
increases the speed of the response and decreases the period, which is 2T. This
increase in sampling rate will also provide a larger open-loop gain, which gives
less steady-state offset. From Eqs. (23.37) and (26.32),  we may write

K,2 _ a+b- -
KU l + b

(26.33)

For quarter-decay ratio ((Y* = i), one obtains from Eq.  (26.33) for T ranging
from 0 to 03

Ku4
;<y<;

u
(26.34)

TheratiovariesfromiforT  =mto!forT  =O.
One may contrast this result with the Ziegler-Nichols rule for proportional

control of continuous systems (see Chap. 17). The Ziegler-Nichols rule requires
that K/K,  = 4;  if this rule is used for a continuous system,  one expects to obtain
a “good” transient response, for which quarter-decay ratio is often considered
good in industrial practice. We see from Eq. (26.34) that K ,,djKu  varies from 1
to i as the sampling period varies from infinity to zero. The Ziegler-Nichols rule
and the rule provided by Eq. (26.34) are comparable.

Example 26.1. A simple example will help illustrate the use of the design equation,
Eq. (26.32). For the sampled-data system shown in Fig. 26.6, determine the open-
loop gain K for quarter-decay ratio for the following sampling periods: (a) T  = 1,
(b) T  = 0.5, and (c) continuous control. Also find the period of oscillation and the
offset for each case.

(a) T = 1.25 T = 1.0 b = e-T’~  = ,-0.8  = 0.449

For quarter-decay ratio, a2 = 0.25 or (Y  = 0.5
Substituting LY  into Eq. (26.32) gives

K a+b 0.5 + 0.449114 = l-b = =
1 - 0.449

1 . 724

From Eq. (26.28),  the ultimate value of c is

K 1.724c(c0)  = - = _ _
K+l 2.724 = 0.633

offset = r(m) - c(m)  = 1 - 0.633 = 0.334
period = 2T = 2

FIGURE 26-6
Sampled-data control system for Exam-
ple 26.1.
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(b) For this case, where T/r  = 0.4 and b = 0.670, the answers are:
K ,,‘j  = 3.550

offset = 0.219
period = 2T = 1

(c) For continuous proportional control of a first-order process, the transient re-
sponse is never oscillatory; therefore, ELq.  (26.32) does not apply.

This example illustrates that a faster sampling rate permits a higher propor-
tional gain and less offset for a fixed decay ratio.

Case II: lkansport  Lag, 0 < UT I T, n = 0
For this case, the response will be delayed by an amount UT . To determine the
decay ratio and overshoot, we must be able to compute the peaks of the transient
response. Because of the delay ar, the peaks will not occur until UT after the
sampling instants. This observation is based on an understanding of the behavior
of a first-order system and the transport lag. The sketch shown in Fig. 26.7
illustrates the situation.

To determine the peak values, we must invert C(z,m)  with

AT = T - a7 and m = 1 - A = ar/T
As shown in Eq.(26.23),  we must obtain G(z,m)  in order to determine C(z,m).
The transfer function G(s) is

G(s)  = GcG,fQs)  = s”  - e-TS) (26.35)
s

We cannot obtain G(z,m)  for G(s) in Eq. (26.35) directly from the table of
transforms because G(s) contains eeaTs where ~7  is a nonintegral number of
sampling periods (i.e., UT < T). However, we can obtain G(z,m)  by using the
approach taken in developing the modified Z-transform in Chap. 25. We express
G(s) as GA(S)  where GA(S)  = G(s)e --h7S.  Recall that AT is the amount by which
the response is to be shifted. We see from Fig. 26.7 that AT = T - a~. Now
GA(S) can be written

GA(S) =
Ke-UTS

(Ts + l)sU  - e
-T.V

This expression may be simplified to give

GI\(S)  = K(l - eeTS)eFTS
S(TS  + 1)

(26.36)

(26.37)

T-az

c(r) delayed by (T-a  7)

FIGURE 26-7

0 + T 2T ST 4T t Response of first-order, sunpled-data
a7 system with transport lag.
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Note that the right side of Eq. (26.37) does not include a term involving a nonin-
tegral power of T. Obtaining the Z-transform of GA(S)  gives an expression, which
is G(z, m). The details are shown in the following steps.

GA(Z) = G(z,m) = K(l - z-‘)z-~~
( s(7s1+  l,}

K(z  - 1) e-Tfr
G(zm)  = z2 z _  e-Th 1

Simplifying this expression gives

G(z,m)  = K(l - b)
z(z  - b)

(26.38)

The other terms needed to evaluate C(z,m)  in Eq.  (26.23) are G(z) and R(z).
G(z) is given in Eq. (26.11). For a unit-step change in set point

Substituting Eqs.  (26.11),  (26.38),  and (26.39) into Eq. (26.23) gives, after con-
siderable algebraic manipulation

C(z,m)  = K(1 - b)z
(z - l){z2  + [K(l - d) - blz + K(d  - b)}

(26.40)

Inversion of this expression will give the value of the delayed response c[t  - (T -
UT)]. These values am, of course, the peak values of c(t) as illustrated in Fig.
26.7.

Mosler (1966) has inverted Eq. (26.40) by partial fraction expansion; the
result is a rather complex expression. He used this result to obtain some design
rules for determining the values of K and T that will produce a transient with
quarter-decay ratio. The development of the rules is quite involved and beyond
the scope of this book.

SUMMARY
In this chapter, the principles of sampled-data theory have been applied to the
proportional control of a process, which represents a large class of systems in
chemical processing, namely, a process that consists of a first-order process with
transport lag [e -aTs/(~~  + l)]. Since the transport lag parameter (UT) may not be
an integral number of sampling periods, the modified Z-transform was used to
obtain the pulse transfer function of the system. As the order of the characteristic
equation for the closed-loop system increases, the stability criteria become more
and mom complex and require that several inequalities be satisfied simultaneously
for stability.

For the case of proportional control of a first-order system without transport
lag, some simple design rules were developed for tuning the proportional controller
to obtain a desired decay ratio.
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PROBLEM
26.1. The stirred-tank control system shown in Fig. P26.1 blends a stream of concentrated

solution with a process stream to maintain a desired concentration of solute in the
outlet stream. The flow rates and concentrations are indicated in the diagram. The
chemical analysis, which must be done manually by withdrawing a small sample
from the tank, takes 1.0 min. At the end of each analysis, the chemist sets a dial
immediately to a value corresponding to the concentration just determined. The
dial, in turn, feeds a concentration signal to the controller. As soon as one sample
is analyzed, a new one is withdrawn from the tank and analyzed.

The flow rate through the valve varies linearly from 0 to 0.02 liter/min as the
valve-top pressure varies from 3 to 15 psig. Under normal conditions, the process
stream is free of solute. However, from  time to time, a load change may occur in
the form of a change in concentration of solute in the process stream entering the
tank.
(a) Show that the system is equivalent to a sampled-data control system and draw

its block diagram.
(b) From the design rules developed by Mosler (1966, Eq.  65), one can show that

the value of K,  required for quarter-decay ratio and fast sampling (T  = ur) is
10.3 psi&/l).  Using this value of Kc, sketch the transient response for c and q
for a step change in ci  of magnitude 0.5 g/l. Determine the extreme values of
c, p,  and q during the transient. Determine the value of c(m).

(c) If the chemist uses a continuous analyzer having no lag, but still sets the dial
manually as just described, every 60 set,  show how the block diagram changes
and determine K,  to obtain quarter-decay ratio. Use the design rule given by
Eq. (26.32) to determine this gain.

Concentrated solution

loog/I  /--I , p~~p~~~oint  = l.og,I
P,  wig

Concentration, g/l

%
Process stream

1 . 0  I/min 1 '

1.0 min needed
for analysis

I - - -

Dial

FIGURE P26-1
Chemist
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27
DESIGN

OFSAMPLED-DATA
CONTROLLERS

In this chapter, sampled-data control theory will be applied to the design of
direct-digital control algorithms. In the most general terms, direct-digital con-
trol is the automatic control of a process by means of a digital computer. Today
the single-station, analog-type continuous controller (pneumatic or electronic) has
been almost completely replaced by an instrument that is essentially a small,
self-contained digital computer. Such instruments are described as microprocessor-
based controllers. This change, of course, was brought about by the great decrease
in the cost of computing components and the tremendous increase in the speed of
computation. In this chapter, the design philosophy for designing special purpose
controllers will be developed and illustrated with some examples.

The block diagram of the control system to be considered is shown in Fig.
27.1 The elements of the block that are implemented by the computer are enclosed
by a dotted line and labeled “computer.” These elements, which consist of two
impulse-modulation switches, the Z-transform of the digital control algorithm
D(z), and the zero-order hold Gh(  s), will be described later. For the moment,
it is necessary to understand only the general operating features of the control
system.

To simplify the discussion, Gp(s)  in Fig. 27.1 contains the valve, the current-
to-pressure converter, and the process. The transfer function for the measuring
element has been taken as one; for this reason, no measurement block is shown in
the feedback path of Fig. 27.1. The output from the hold is a current (or voltage)
signal.

405
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Computer
I - - - - -

- - - - - - - - - - - - - - - - - - - - _  u

I I I I I
0 T 2T 3T 4T

FIGURE 27-1
Block Diagram for a computer control system.

t

Every T units of time, the computer reads and stores the measured value
of the process variable C. The computer operates on this signal, according to the
algorithm D(z)  stored in it, to produce a signal to the valve M,. It is assumed
that the computation of M,  is instantaneous, relative to the sampling period of
the process. For many chemical processes that am slow, this is a reasonable as-
sumption. By means of the hold, the signal to the valve, M,, is held constant
(i.e., clamped) between sampling instants. Consequently, the valve response dur-
ing transient operation of the process will resemble a stair-step function. The
control algorithm is simply a mathematical description that tells the computer
how to calculate the signal to the valve each sampling instant.

The digital computer implements an algorithm of the form

m(nT) = -&ieK n - i)T]  - Ahjm[(n  - j)T] (27.1)
i=o j=l

This equation gives the value at which me(t)  is to be held constant during the
following sampling period, that is,

m&)  = m(nT) for nT I t < (n + l)T

The term T is the sampling period and gi and h j are constants. The set of constants
(gi, hj) constitutes the control algorithm. In the following pages, methods will be
developed for finding these constants for a specific design of a controller.

To understand Eq. (27.1) more readily, consider the case where k = 2 and
p = 2. If we want to compute m at the one-hundredth sampling instant, Eq.
(27.1) is written

m(lOOT)  = gae(lOOT)  + gle(99T)  + gze(98T)  - hlm(99T)  - hzm(98T)
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97T97T 98T98T 99T99T 100T100T 101T101T 102T102T 103T t103T t
FIGURE 27-2FIGURE 27-2
‘Qpical  relationship between m,(t) and e(r) for a computer control system.‘Qpical  relationship between m,(t) and e(r) for a computer control system.

Figure 27.2 illustrates the nature of the signals used in this expression for
m(lOOT).  Notice that m(lOOT)  is computed instantaneously at t = 1OOT.  For
this particular example, the computation requires the present value of error, two
past values of error, and two past values of manipulated variable. The more con-
stants (gi, hj) in the algorithm, the more complex it becomes in terms of computer
storage and computer time needed to solve the algorithm.

To illustrate how an algorithm of the fotm of Eq. (27.1) is derived, several
algorithms will be derived for a process consisting of a first-order process with
transport lag.

ALGORITHMS FOR A FIRST-ORDER
WITH TRANSPORT LAG MODEL

A variety of algorithms will be derived for a process with a transfer function that
is first-order with transport lag, that is,

G,(s) = 5 (27.2)

Figure 27.1 is redrawn as Fig. 27.3 with GP(s) expressed as a first-order pro-
cess with transport lag and G&)  expressed as a zero-order hold. In Fig. 27.3
the clamped signal M,  is obtained from the zero-order hold, which obtains its input

Computer
r - - - - - - - - - - - - - - - - - - - - - - - - - - ~

FIGURE 27-3
Computer control system.
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signal from an impulse-modulated sampling switch. Since this signal from the
switch is a pulsed signal, it is given the symbol M*  in the diagram. At the outset
of this discussion, the reader should realize that the components enclosed in the
dotted line do not represent any physical components or hardware; they are simply
mathematical symbols that aid in deriving the control algorithm. From Fig. 27.3,
we may write

M(z)  = D(z)E(z) (27.3)

To obtain the algorithm in the form of Eq. (27.1),  D(z) may be written

D(z) =
go + glz-’  + 822-2 + .*a = M(z)
1 + htz-’  + h2z-2 + ... E(z)

(27.4)

Cross-multiplying this expression and solving for M(z) give

M(z) = goE(z)+glz-‘E(z)+...-{hlz-‘M(z)+h2z-2M(z)+...}  (27.5)
Recognizing the term z -‘E(z)  to be equivalent to the Z-transform of the error
delayed by i sampling periods, e(nT - i T), we may write Eq. (27.5) in the time
domain as

m(nT)  = goe(nT) + gle[(n  - l)T] + g2e[(n  - 2)T]  + *a*
-{hlm[(n  - l)T] + h2m[(n  - 2)T]  + *.a} (27.6)

Since this expression matches Eq. (27. l), we see that Eq. (27.4) is a satisfactory
expression for D(z).

Performance Specifications
Before the details of the design method for digital control algorithms are presented,
the performance specifications for the control system will be listed. The minimal
prototype response of Bergen and Ragazzini (1954) considered the response of
the system only at sampling instants. The requirements for the minimal prototype
response are given in the following list.

1. The compensation algorithm must be physically realizable (i.e., no prediction
is needed by the algorithm).

2. The output of the system must have zero steady-state error at sampling instants.
3. The output should equal the set point in a minimum number of sampling

periods.

However, for the practical application of a digital control algorithm to a real
system, several additional requirements are important. These are:

4. The digital control algorithm should be open-loop stable.
5. Unstable or nearly unstable pole-zero cancellations should be avoided, since

exact cancellation in real processes is impossible, and the resulting closed-loop
system may be unstable or excessively oscillatory.
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6. The design should consider the entire response of the system in order to elim-
inate hidden oscillations (intersample ripple).

7. In addition to the system output responding in a desired manner to the input
disturbance selected for the design of the control algorithm, the system output
should be satisfactory for other possible disturbances.

These additional constraints are necessary to ensure that the proposed al-
gorithm will perform satisfactorily on real systems. To meet these requirements,
the resulting system may respond with a settling time longer than the minimal
prototype settling time (item 3 in the preceding list). The concept of a minimum
settling time is used only as a theoretical performance criterion. In real systems,
where modeling error and noise are present, it is not possible to bring the state
of the system completely to rest. This does not negate the value of the theoret-
ical concept of minimum settling time, because systems designed to meet this
requirement are likely to give satisfactory performance in tests on real processes.
In addition, all digital control algorithms to be presented hem  contain the equiva-
lent of an integrator, which ensures zero steady-state offset for step disturbances,
regardless of modeling error and the location of the disturbance in the loop. Fi-
nally, the minimal prototype response concept provides the basis for a systematic
approach to the design of digital control algorithms.

Analysis and Design of Sampled-Data
Controllers
From Fig. 27.3, we may write directly from observation

E(s) = R(s) - GpGh(s)M*(s)  - UG,(s)

and

M*(s)  = D*(s)E*(s)

Taking the Z-transform of each equation gives

E(z)  = R(z) - GpGtz(zW(z)  - UG,(z)
M(z)  = D(z)E(z)

Combining the last two equations gives

R(z)
E(z)  = 1 + G(z)D(z)  -

UG,(z)
1 + G(z)D(z)

where G(z) = G,Gh(z>
We may also obtain from Fig. 27.3

C(z)  = R(z)  - E(z)

Combining Eqs. (27.11) and (27.12) gives

G(zP(z)R(z)  +
‘(‘)  = 1 + G(z)D(z)

UG,(z)
1 + G(z)D(z)

(27.7)

(27.8)

(27.9)
(27.10)

(27.11)

(27.12)

(27.13)
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Note that R(z) in Eqs. (27.11) and (27.13) is not bound to other transfer functions.
This can be advantageous in design computations.

Design Methods
It is convenient to design D(z) for a load change or a set-point change. For a
given disturbance in load or set point, the designer proposes a desired response
at sampling instants, which means that C(nT) must be specified. This desired
response will be written as Cd. From the desired response Cd(nT), one obtains
Cd(z). Consider the case of only a load disturbance, i.e., R(z) = 0. Solving Eq.
(27.13) for D(z) and replacing C by Cd  to indicate that the desired response of
C has been selected by the designer give

D(z)= &[$$$l] (Design equation for load change) (27.14)

Equation (27.14) is the equation to be used to design D(z) for a load change.
In a similar manner, one can obtain from Eq. (27.13) a design equation for

set point change, i.e. U(z)  = 0. The result is

Cd(Z)

D(z)  = G(z)[R(z)  - cd(z)]
(Design equation for set-point change)

(27.15)

It is necessary that the highest power of z in the numerator of D(z) not
exceed the highest power of z in the denominator. If this restriction is not satis-
fied, the algorithm will require knowledge of the future values of the error, i.e.,
prediction. An algorithm not satisfying this restriction is called unrealizable. Note
that Eq. (27.4) is written in such a form that it does not admit the case where
the highest power of z in the numerator exceeds the highest power of z in the
denominator. If an unrealizable D(z)  is obtained, we obtain the expression given
by Eq. (27.4) multiplied by some positive power of z .

To show how the control algorithms are obtained, several detailed examples
that apply to Fig. 27.3 will be presented.

Example 27.1. (T = UT,  fast sampling, load)
With regard to Fig. 27.3, consider the design of D(z)  for T  = a~.  This

relation between the sampling period and the process transport lag will be referred
to as fast sampling. Later, an example involving slow sampling will be considered,
in which T > aT.

Consider a unit-step change in load to enter the system at an instant of sam-
pling. The Z-transform of the output can be written in general form:

c,(z) = 170 + qlz-’  + 72z-* + ‘*’ (27.16)

where the coefficients (7/i)  correspond to the desired outputs of the system at sam-
pling instants. It is the task of the designer to specify a desired output that leads
to a realizable algorithm and fulfills the performance specifications listed earlier. In
some cases, the nature of the physical process being controlled will aid in choosing
a suitable Cd(Z) as expressed by Eq.  (27.16).
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The response diagram in Fig. 27.4 will help explain how the output C,(z)  is
selected by the designer. Because the  transport lag in Gp(s)  is one sampling period
T, the  output will remain at 0 for the first two sampling instants, that is,

c(O)  = 0, c(T) = 0

The response of c, which is the usual first-order exponential rise starting at t  = T,
will reach 1 - emTk  at t = 2T, that is,

c(2T) = 1 - edT’r  = 1 - b (27.17)

where b = e-“‘.

The control algorithm in D(z)  cannot start to respond until t = 2T, at which time
the error e has become - (1 - b). The value of the manipulated variable m c generated
by the  algorithm at t = 2T will depend on the actual algorithm used. However,
regardless of the value of m,  at t = 2T, c will not change its course until t = 3T
because of the transport lag emTS. The output of c from t = 2T to t = 3T will
continue as an exponential rise and reach 1 - e-2T’r at t = 3T, that is,

c(3T)  = 1 - e -2Th  = 1 _  b2

After t = 3T, the designer is free to choose any values of c at sampling instants.
If c is chosen as zero at sampling instants beyond t = 3T, the resulting algorithm
will be called a minimal prototype algorithm because the output returns to the set
point in a minimum number of sampling periods. The response shown in Fig. 27.4
illustrates the minimal prototype response for a unit-step change in load.

0 T 2T 3T 4T

- e

l- b2

1-b

LLL --------

-----

0 T 2T 3T 4T

FIGURE  27-4
Minimal prototype response to a unit-step change in load
for Example 27.1.
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The important point to be emphasized is that c follows the response 1 - e -‘IT
from t = T to t = 3T,  regardless of the algorithm D(z). The values of q in Eq.
(27.16) for this example am  summarized below

70 = 0
rll = 0

qz=l-b
73 = 1 - b2

7l49  75~  -*an  rli = 0 (for minimal prototype)

The designer, of course, may choose nonzero  values of ni  for i  > 3, for which case
the response will be a nonminimal prototype response.

For the minimal prototype response, we obtain from EQ. (27.16)

C,(z)  = (1 - b)z-2 + (1 - b2)z-3
o r

cd(z)  =
(1 - b)z + 1 - b2

23

For the system under consideration in Fig. 27.3, we have

(27.18)

G(s) =  GpGh(s) =
I_ e-Ts e-Ts ;

s -
7s + 1

for which the corresponding G(z) is
l - b

G(z)  = -
z(z  - b)

For a unit-step change in U,

UGp(s) =
e-Ts

S(TS + 1)

for which the corresponding Z-transform is

UGp(z>  =
l - b

(z - l)(z - b)

(27.19)

(27.20)

Substituting Eqs. (27.18),  (27.19),  and (27.20) into Eq.  (27.14) gives, after con-
siderable algebraic manipulation

1 b(1  + b)

D(z)  =
l+b+b2Z  ‘- l+b+b2 I

1 - b (z - l)[z  + (1 + b)]
(27.21)

It is instructive to find the expression for the manipulated variable in the form of
Eq.  (27.6). This is the form that one must use to write a computer program for
control of the process. We may write Eq.  (27.21) in the form

M(z)
D(z)  = I =

az(z -7)
(z - l)[z  + (1 + b)l (27.22)

where  (Y  = (1 + b + b2)/(1  - b)
y = b(1  + b)l(  1 + b + b2)
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Cross-multiplying Eq. (27.22) gives

(z - l)[z  + (1 + b)lM(z) = az(z  - y)E(z)

Expanding the terms and rearranging give the result

M(Z) = d(z)  - ayE(z)~-~  - bM(z)z-’  + (1 + b)M(z)z -* (27.23)

This form matches Eq. (27.1) or Eq. (27.5),  and one can see that the algorithm is
quite simple, with k = 1 and p = 2. The form corresponding to Eq. (27.6) is

n(nT)  = ae(ni”)  - wye(nT - T) - bm(nT - I”)

+ (1 + b)m(nT - 2T) (27.24)

To obtain the sequence of values of manipulated variable for a unit-step change in
load, we proceed as will be shown. Before the load change occurs, assume that
the system is at steady state for which case e(t) = 0 and m(t) = 0. Furthermore,
assume that the load disturbance occurs at t = 0, i.e., at n  = 0. These are the
usual initial steady-state conditions that are used in testing the dynamic performance
of a control system.

To see how Eq. (27.24) is used by a computer, the computation can be orga-
nized as shown in Table 27.1. At each sampling instant, m(nT) is calculated from
Eq. (27.24). For the example under consideration, we know that m = 0 and e = 0
for t 5  0. The leftmost column in the table gives the time at sampling instants
when the computation is made. For convenience in computation, the coefficients of
the terms on the right side of Eq. (27.24) are placed in a row under the appropriate
terms of this equation.

The calculation of m(nT) for several values of n  are now shown; these calcu-
lation steps are the same as those the computer would follow in implementing Eq.
(27.24).

For m(O). Substituting n  = 0 into Eq. (27.24) gives

m(O) = ae(0)  - aye  - bm(-T)  + (1 + b)m(-2T) (27.25)

TABLE 27.1
Computation of m(H)  from computer control algorithm

?I @WI d(n - ml MT) NM - WI m[(n  - WI

I II (y I -(Y-Y  I I - b I l + b I
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From the initial conditions stated earlier,

e(O) = e(-T) = 0

and

m(-T) = m(-2T) =  0

Introducing these values into Eq.  (27.25) gives m(O) = 0.
In preparation for the next computation of m(U), the values of e(C),

m(nT),  and m[(n - l)T] are shifted to the next sampling instant as shown by
the arrows in the table.

For m(T). To compute m(T), we change n in Fq (27.24) to 1 to obtain

m(T) = se(T)  - aye(O) - bm(0) + (1 + b)m(-T) (27.26)

Substituting the appropriate values of e and m as given in the table into this expres-
sion gives m(T) = 0.

For m(2T). Letting n = 2 in Eq.  (27.24) gives

m(2T) = ae(2T) - aye(T) - bm(T) + (1 + b)m(O) (27.27)

At t = 2T, the disturbance has worked its way through the transport lag and the
error now differs from zero. We have at t = 2T as shown in the table or in Fig.
27.4

e(2T)  = -(l - b)
e(T) = 0

m(T) = 0
m(O) = 0

Substituting these values into Q. (27.27) gives m(2T) = a[ -(l - b)].
Introducing the expression for (Y  from EQ. (27.22) gives m(2T) = -(l + b + b*)

For m(3T). Letting n = 3 in Eq.  (27.24) gives

m(3T) = cye(3T)  - qe(2T)  - bm(2T) + (1 + b)m(T)

At t = 3T,

e(3T)  = -(l - b*)

e(2T)  = -(l - b)

(27.28)

m(2T) = -(l + b + b*)
m(T) = 0

Substituting these values into IQ. (27.28) gives

m(3T) = CY[-(1  - b*)]  - cwy[-(1  - b)]  - b[-(1 + b + b*)]

Reducing this expression algebraically gives m(3T) = - 1,
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J--L-
O -0 12 3 4 5tlT

FIGURE  27-5
Response under fast sampling, load, minimal pmto-
type algorithm to a unit-step change in load (a =
OS),

If one continues in this sequential manner, which is how the computer handles the
computation, one can show that

m(4T)  = m(5T)  = m(G)  = -**  = -1

In other words, the manipulated variable reaches -1 at t = 3T, and remains at
this value thereafter. A graph showing the response and the manipulated variable is
shown in Fig. 21.5 for the case where a = 0.5. For this case

b = e-*‘r  = ,-o.5  = 0.606

and

m(2T)  = -1.974

The manipulated variable m(nT) that results for this case is not surprising when
one considers the nature of the first-order system with transport lag. In fact, for this
simple process, one can calculate the values of manipulated variable directly, without
use of Eq. (27.24). However, for other disturbances and for more complex algo-
rithms, the calculation becomes very involved without a systematic approach such
as that given by Eq. (27.24).

Settling 7lme
A useful parameter for describing a transient response of a control system is
settling time. For a load change, the settling time is defined as the time required
to reduce the error to zero; this time is measured from the sampling instant for
which nonzero error is recorded to the sampling instant for which the output
returns to the set point and remains at the set point at future sampling instants.
For the example under consideration, the settling time ts is 2T. This can be seen
most easily from Fig. 27.5.
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For a set-point disturbance, the settling time is defined as the time required
to reduce the error to zero; this time is measured from the sampling instant for
which the set-point change is first detected to the sampling instant for which the
response returns to the set point and remains there at future sampling instants.

OBTAINING M(z) DIRECTLY FROM KNOWLEDGE OF C(z). If one wishes to
compute M(z) without using the sequential method just discussed and shown in
Table 27.1, the following direct procedure can be used.

For the servo problem, where U(S)  = 0, one can write directly from Fig.
27.3

C(z) = M(z)G(z) (27.29)

where G(z) = GhGp(z)

Solving for M(z) gives

M(z)  = C(z)/G(z) (27.30)

For the regulator problem, where R(s)  = 0, one can obtain directly from Fig.
27.3

M(z) = -D(z)C(z) (27.31)

For Example 27.1, one can use Eq. (27.31) to obtain M(z) for a unit-step change
in load; C in Eq. (27.3 1) is replaced by Cd  of Eq. (27.18). The reader should
try this approach to see that it leads to the same results as those obtained in Table
27.1.

Example 27.2. (T  > UT, slow sampling, load)
In this example, the minimal prototype D(z)  will be designed for the following

conditions:

T  > a7 (slow sampling)
U = l/s (load disturbance)
G, = eCars/(~s  + I),  ur < T

The fact that UT is not an integral number of sampling periods will make the deriva-
tion of this algorithm more complicated. Based on the response of a first-order
system with transport lag, the minimal prototype response shown in Fig. 27.6 can
be written:

c(O)  =  0

,-(T)  =  1 - e-!T-aT)/T

c(2T)  = c(3T)  = *.. c(nT)  = 0

The desired response Cd is therefore

Cd(Z) zz 0 + [I - f+*-nrqz--  + oz-2 + . .’
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T-or

FIGURE 27-6
Minimal prototype response for Example
27.2.

o r

C,(z) = (1 - d)z-’ (27.32)

For a load algorithm, we use Q. (27.14) to obtain D(z). Notice that the peaks in
Fig. 27.6 occur at time ur  into each sampling interval. For this problem, we may
use Eq.  (26.11) with K = 1 and n = 0 to obtain, after simplification

G(z)  = &$)[z+$j (27.33)

For this example,

UC,(s)  =
e-am

-am l/r
S(TS + 1) = e s + (l/T)

To obtain UG,(z),  we shall make use of the modified Z-transform as was done in
Chap 25. With this in mind,

let ,-hTs  = e-am

or AT = ar

orh =arlT

We can now write the m parameter in the modified Z-transforms as

m = 1 - A = 1 - (w/T)

The Z-transform of UGP(s) becomes

U%(z)  = z[ ,;;I$]  = z”( s(Tsl+  ,)
with m = 1 - (u/T).

From the table of transforms (Table 22. l), we obtain

UG,(z)  = 1 -
e-(l-adT)T/~

z - l z - b
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Cl-  b)

0 2 t/T 6

0

c

z - 1k
FIGURE 27-7

-2 0
Response under slow sampling, load, minimal prototype

2 tlT 6 algorithm to unit-step in load. a = 0.5, T/r = 1.

This may be simplified to

U,‘$(z)  = (’ ;zTkj;  +$

Introducing Eqs. (27.32),  (27.33),  and (27.34) into Eq.  (27.14) gives

D(z) =
z(1 - db) z.  - w]

1

(1-d)2(z-1)[z-e]
(27.35)

It is instructive to examine the continuous response for this example as shown in
Fig. 27.7. Although the response is zero at sampling instants after t = T, there is
intersample ripple. Furthermore, one can show that the manipulated variable does
not settle down, as was the case in Example 27.1, but continues to oscillate with
decreasing amplitude as shown in Fig. 27.7. The reason for this unsatisfactory
behavior is that the minimal prototype response is too demanding in returning the
process variable to the set point. If the designer selects a nonminimal prototype
response, which permits the response to return to the set point at 3T or later, the
intersample ripple will be eliminated. A possible nonminimal prototype response is
shown in Fig. 27.8.

Ir\__ FIGURE 27-8
T 2T 3T 4T t Possible nonminimal prototype response for Example

a5 21.2.
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Response of Sampled-Data System to Other
Disturbances
As stated in item 7 of the design specifications in this chapter, it is important
to test the control algorithm for inputs that differ from the input for which the
algorithm was designed. The computation for other inputs is straightforward, but it
can be quite tedious. One uses Eq. (27.13) with the appropriate R(z) or UG,(z).
For the algorithm developed in Example 27.1, the response to two different inputs
will be considered: a step change in set point, and a ramp change in load.

STEP CHANGE IN SET POINT. For a set-point change, Eq. (27.13) becomes:

G(zP(z)R(z)
‘(‘)  = 1 + G(z)D(z)

(27.36)

For a unit-step change in R

Substituting this expression for R(z) and those for G(z) and D(z) from Eqs.
(27.19) and (27.21),  respectively, into Eq. (27.36) gives

l - b cfz(z - Y)

C(z)  =
z(z - b) ( z  - l)[z + (1 + b)] z ’ 1

1+  1-b az(z  - Y)
(27.37)

z(z - b) ( z  - l)[z + (1 + b)]

The inversion of this expression gives a result, shown graphically in Fig. 27.9.

I I I I I I
0 2 4 6 r/T

FIGURE 27.9
Response under fast sampling, load, minimal
prototype algorithm to a unit-step change in
set point (a = 0.5).
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Notice that the response gives an overshoot with a settling time of 3T and the
response is free of intersample ripple. From this result, one concludes that the
response is satisfactory for a step change in set point.

RAMP CHANGE IN LOAD. For the algorithm developed in Example 27.1, con-
sider a ramp change in load, for which u(r)  = t or U(S)  = l/s2. For a load
change, Eq. (27.13) becomes

UG,k)
‘(‘I  = 1 + G(z)D(z) (27.38)

For this case, one can show that

z(1 - b)
WT)(Z  - l)(z - b) 1 (27.39)

Introducing this expression for UG,(z)  and G(z) and D(z)  from Eqs. (27.19)
and (27.2 l), respectively, into Eq. (27.38) gives, aker considerable algebraic
manipulation

C(z) =
Z-3
--&z  + (1 + b)l{z[T  - ~(1  - b)]  - [bT  - (1 - b)~]}

Inverting this expression by the method of long division gives

c(O)  =  0

c(T) = 0

c(2T)  = T - (1 - b)~

c(3T)  = 2T - (1 - b2)7

c(nT)  = ~(1  - b)(2  + b) forn L 4

The response to the ramp input is shown in Fig. 27.10. The response is stable and
shows offset that is typical for proportional control of continuous systems when
subject to a ramp input in load.

4 u(t)

\

2

L

c(t)
J FIGURE 27-10

OO
Response under fast sampling, load, minimal prototype al-

2 4 6 t/T gorithm for ramp change in load (a = 0.5).
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The two examples given here should be sufficient to show how the control
algorithm D(z) can be obtained. The interested reader will find a number of
algorithms developed by Mosler et al. (1967),  two of which have been presented
here as Examples 27.1 and 27.2.

D(z)  FOR CONVENTIONAL CONTROLLERS
The conventional continuous controllers discussed in Chap. 10 have their equiv-
alent forms in sampled-data control. The control algorithms in terms of D(z) for
PI and PID controllers will be developed in this section.

PI Control
The PI control law can be written as

m(t) = &e(t)  + 3
I

t
e(t) dt (27.40) ~

TI  o ]

To develop D(z) we first write Eq. (27.40) for m(G)  and m[(n  - l)T] as
follows:

m(nT) =  K,e(nT)  +  K,
I

tZT

e(t) dt (27.41)
71  o

m[(n  - l)T] = K,e[(n  - l)T] + K,
I

(n-1)T

e(t) dt (27.42)
71  o

Subtracting Eq. (27.42) from Eq. (27.41) gives

m(nT)-m[(n-  l)T] = K,{e(nT)-e[(n-  l)T]}+ 3
I

IZT

e(t) dt (27.43)
71  ( n - l ) T

To convert this equation into a form that involves past values of m and present and
past values of e, as is required by Eq. (27. l), we must approximate the definite
integral. Many possible approximations can be used, but the one used here will
consider e(t) to remain at e(nT) during the time interval (n - 1)T to nT. The
nature of this approximation is shown in Fig. 27.11. The approximation may be
written

e(t)dt  s Te(nT) (27.44)

FIGURE 27-11
t Approximation of a definite integral: ABDEA = exact

value, ACDEA = approximate value.
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Using this approximation in Eq. (27.43) and solving for m(nT) gives

m(nT)  = m[(n - l)T] + K,{e(nT) - e[(n - l)T]}  + KJ
-e(nT)

TI
In terms of Z-transforms, this equation becomes

M(z)  = M(z)z-’ + K&(z)  - K,E(z)z-’  + (KcTh)E(z)

Solving for M(z)/,??(z),  which is D(z), gives the following expression for D(z)
for the PI controller:

M(z) Kcz -aD(z) = - = --
E(z) a z - l

(27.45)

71where (Y  = -
r1 +  T

Before developing D(z) for the PID controller, it will be instructive to study the
nature of the response for D(z)  in Eq. (27.45) to a unit-step change in E. The
block diagram for this case is shown in Fig. 27.12. ForThis  block diagram, we
write directly

where E(z) = z/(z - 1)
M(z) = D(z)E(z) (27.46)

For this example, let K, = rr = T = 1, then (Y = 0.5 and D(z)  from Eq.
(27.45) becomes

Using this expression for D(z) in Eq. (27.46) gives

z 22-1  2z*-z
M(z)  = - -  =

z - l  z - l 22-22  + 1

By long division, one obtains

M(z)  = 2+3~-‘+4~-*+5z-~+...

In terms of the time domain, this equation gives

m(O) = 2

m(l) = 3

m(2) = 4

m(3) = 5
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1 F I G U R E 27-13

0 Comparison of sampled-data response and continuous re-
0 1 2 3 4t sponse of a PI controller subjected to a step change in input.

A graph of the sampled-data response and the response for a continuous controller
for the same parameters (K, = 1, r1 = 1) is shown in Fig. 27.13.

Notice that the sampled-data response equals the continuous response at
sampling instants for n 2 1. As the sampling period is reduced, the sampled-
data response appioaches  the continuous response. Based on this observation,
we can see that the sampled-data controller is a reasonable approximation of the
continuous controller.

PID Control
In a similar manner to the development of D(z) for PI control, we shall develop
D(z) for PID control. The PID control law may be written

d e
edt + Kc7g-;i;

Writing m(t) at nT and (n - l)T gives

m(nT)  = Kc{  e(nT)  + $/on*e(t)dt  + % $I,=,d
and

m[(n - l)T] = K,

(27.47)

(27.48)

For this case, the approximation to the integral will be the same as used for
PI control [Eq. (27.44)].  The approximation for the derivative will be taken as a
simple backward difference approximation; thus

d e- = dW - e[(n  - 1)Tl
dt t=,,T - T

(27.49)

This simply states that the derivative is approximately equal to the change in e
over one sampling period divided by the sampling period.
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If we introduce these approximations for the integral and the derivative into
Eqs. (27.47) and (27.48),  we obtain after subtracting Eq. (27.48) from Eq. (27.47)

m(nT) - m[(n  - l)T] = K,  e(nT)  - e[(n  - l)T] + $e(nT)
i

e(nT)  - 2e[(n  - l)T] + e[(n  - 2)T]
11

(27.50)

Converting this equation to the z-domain and solving for M(z)/E(z),  which is
D(z), finally gives the algorithm:

D(z) = KJz*  - Pz  + rl
PZ(Z - 1)

(27.51)

where p = CT + 27Dh
T* + Tq  + TITD

71 + 70 l

Y
=

T* + Tq  + TITD
TTI

P= T* + Tq  + TjTD

The nature of the response for a unit-step change in input for K,  = 71 =
T = 1 and ro = 2 is shown in Fig. 27.14. The details of obtaining this result are
left as an exercise for the reader. The response of the continuous PID controller
to a unit-step change in input for the same parameters (Kc,71,7~) is also shown
in Fig. 27.14. Notice that the impulse at t = 0 for the continuous response is
replaced by a pulse during the first sampling period that reaches a value of 4.0
instead of infinity. After t = 1, the sampled-data response is the same as for
the PI sampled-data response shown in Fig. 27.13. As 70 is increased, the pulse
during the first sampling period will become larger, thereby approximating more
closely the jump to infinity for the continuous response.

The simple backward difference formula used to approximate the derivative
term in the PID control algorithm can be replaced by a higher order difference

c

WI m(4for  I

con t inuous
I I responsei

-1

Oo :
I I I I

: 3 :r

FIGURE 27-14
Comparison of sampled-data response and continuous response for a
PID  controller subjected to a step change in input.
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approximation to give an alternate version of D(z). In fact, many alternate dif-
ference approximations for the integral term and the derivative term can be used
to give a variety of forms for D(z). As the sampling period T is reduced, the
response of the control system using different forms of D(z)  for PI or PID control
should approach the response for continuous versions of the algorithms. One of
the problems at the end of this chapter involves the calculation of the response of a
system that uses the D(z)  for a PI controller given by Eq. (27.45). In general, the
replacement of a continuous controller by its equivalent sampled-data version will
give a less stable response for the same set of controller parameters (Kc,r~,ro).

SUMMARY
In this chapter a systematic procedure for the design of direct-digital control
algorithms was described. The procedure requires that a model for the process be
known and that the location of the disturbance (set point or load) and the type of
disturbance (step, ramp, etc.) be specified. These requirements are similar to those
for designing a controller by the internal model control procedure discussed in
Chap. 18. The design. procedure presented here gives the designer a wide choice
of the desired response of the control system; this choice is usually based on
knowledge of the response of the process model. The minimal prototype response
is an ideal response that reduces the error (at sampling instants) to zero in the
least time. The control algorithm D(z) obtained by the design procedure can be
written in a form that can be used by a digital computer to control the process.
The need to test a proposed algorithm for a disturbance other than the one used
to design the algorithm ‘was emphasized and illustrated by examples.

The equivalent sampled-data control algorithms for conventional (PI and
PID) control were derived and the open-loop response for each algorithm was
compared to the response for the corresponding continuous algorithms. As the
sampling period T decreases, the response of the digital algorithm approaches
that of the continuous algorithm.

PROBLEMS
27.1. Derive D(z)  for the control system shown in Fig. P27.1 for a unit-step change in

R and for a response in which C is returned to the set point in one sampling period
and remains there at sampling instants. Notice that Cd is l/(z - 1) for this problem.

Express the manipulated variable m in terms of present and past values of e
and m. Plot m(t) and c(t) during the first few periods.

FIGURE F’27-1
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27.2. (a) Determine the pulse transfer function, D(z), for the system shown in Fig. P27.2
if the input disturbance is a unit-step function and if the output is to reach the
set point one sampling period after the disturbance occurs. Plot the manipulated
variable. Notice that Cd is l/(z - 1) for this problem.

(b) If the input is r(t) = tu(t),  plot the output if the D(z)  of part (a) is used.

FIGURE P27-2

27.3. The sampled-data system shown in Fig. P27.3 uses the following algorithm

1 z(z - b)
D(z)  = (1 - b)  (z + l)(z  - 1)

For the process r = 1, a = 1, T = a7  = 1. If a unit-step enters as a
load change (i.e., U(S)  = l/s), determine C(z). Plot the continuous response c(t).
Determine values of c(t) at t = 1, 1.5, 2, 3, and 4. Determine me(t)  for t = 0,
1, 2, 3, and 4.

FIGURE P27-3

27.4. Determine the minimal prototype response for a unit-step change in load for the
control system shown in Fig. P27.4 for the following plant transfer functions:
(a) Gp = eeTSl(s  + 1)
(b) Gp  = 1/(2s  + 1)
(c) G, = e-2Ts/s
(6)  Gp = l/(s*  + 0.4s + 1)
Express your result as Cd = 70 + 7112  -l + 1722  -2 + . * .
Give numerical values of 70, 71, 712,  . . .
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27.5. (a) For the sampled-data process shown in Fig. P27.5~ show that

G(z)  = K(z - a)
z(z - l)(z  - b)

where  b = ebTf7

a = 2 - l/b
K is proportional to K,

*
For T = 2, determine the value of K,  for which the system becomes unstable.
Use the root locus method. For Kc  = 1, determine c(O).

(b) For the process in Fig. P27.5b, use for D(z)  the following PI equivalent:

Kcz-a!
D(z) =  - -

a  z - l

71where (r = -
q + T

For Kc  = 1, ~1 = 1, and r = 2, determine c(nT)  and compare with c(nT)
ofpart(  .

(c) For the continuous control process shown in Fig. P27.5, determine the ultimate
value of K,. Compare this value of K,  with that of part (a) to see the effect of

R=u  (4 ywl+

4

1 -e  -Ts

3

s

-TS
-  K,(  1 +r$)  -  e -c

rs+ 1

q= 1
I I

(a)

(b)

(cl
FIGURE  P27.5
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28
STATE-SPACE

REPRESENTATION
OFPHYSICAL

SYSTEMS

Up.to this point, we have described dynamic physical systems by means of dif-
ferential equations and transfer functions. Another method of description, which
is widely used in all branches of control theory, is the state-space method. In fact,
other disciplines of engineering (e.g., electrical engineering) introduce the state-
space description before the transfer function description. The reader who plans to
go beyond an introductory course in control or read from other engineering disci-
plines should be familiar with state-space methods. In the chapters of this part of
the book, the state-space method will be developed and compared with the  trans-
fer function method. It is much easier to start with the transfer function method
and then develop the state-space method. The mathematical background needed
for the transfer function approach involves differential equations and Laplace
transforms. The additional mathematical background needed for the state-space
method involves matrix algebra. Nearly all students today receive information on
matrices in their mathematics courses. For those who are rusty in this topic, it
is recommended that they review some of the fundamental matrix operations. A
brief review of matrix algebra is given in Appendix 28A.

The transfer function approach is sufficient to calculate the response of linear
control systems. The state-space approach is especially valuable in the field of
optimal control of linear or nonlinear systems. The concepts developed in this
part of the book will be used in the next part on nonlinear control.

4 3 1
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STATE VARIABLES

A linear physical system can be described mathematically by:

l an nth order differential equation
l a transfer function
l n first-order differential equations
l a matrix differential equation

So far, we have used the first two mathematical representations for describing
physical systems. The third and fourth representations are referred to as state
variable descriptions.

To illustrate these four methods of description, consider the familiar second-
order process relating an output y to an input u.  The four expressions for this
process are listed below.

1. nth order differential equation (n = 2)

zd*y d yrdt2+25rdt+y=u

2. Transfer function. The transfer function corresponding to Eq. (28.1) is

Y(s)  - 1

U(s) 7232  + 2578 + 1

(28.1)

(28.2)

3. 12  first-order differential equations (n = 2). Equation (28.1) can be expressed
by the following differential equations:

ii:1 = x* (28.3~)

i*  =
1 . 25 1

-T;zx1-  ,7x*  + -Ju (28.3b)

wherext  = y andx2  = j

In Eqs. (28.3~)  and (28.3b),  xt and x2 are the state variables.
To see that Eqs. (28.3) are the equivalent to Eq. (28. l), differentiate both

sides of Eq. (28.3~); the result is

Xl = i* (28.4)

In Eq. (28.3b),  we may now replace i2 by X 1 and x2 by i 1;  the result is

1Xl  = Y. 1
--$x1-  TX’+ -pu

Since xt = y, we may write

il=j a n d

Using these expressions in Eq. (28.5) gives

fl = jj

+ ‘u72
(28.6)



STATE-SPACE REPRESENTATION OF PHYSICAL SYSTEMS 433

Equation (28.6) is, of course, the same as Eq. (28.1). We shall see later that
other choices for x 1 and ~2 are possible; at this point, the reader is asked
to accept Eqs. (28.3~)  and (28.3b)  as a valid description of the second-order
system under consideration.

4. Matrix differential equation. Equations (28.3~)  and (28.3b)  can be written as
one matrix differential equation as follows:

. i = Ax+bu (28.7)

where

- 0 1 0
A =  - 1 -25 b= 1 u is a scalar- -

72 7 72

The representation given by Eqs. (28.3) and the representation given by Eq.
(28.7) are exactly the same; Equation (28.7) is in a more compact form. The state
variables xt and x2 are represented by the column vector x. The coefficients of
the state variables on the right sides of Eqs. (28.3~)  and (28.3b)  are the elements
of the matrix A. In this example, there is only one input or forcing term, U,
which is a scalar. Each term on the right side of Eq. (28.7) must be a vector
containing two elements (i.e., a 2 X 1 matrix). In order for the expression given
by Eq. (28.7) to agree with Eqs. (28.3~)  and (28.3b),  the coefficient of u must be
a vector with the upper element zero. With some practice, the reader will be able
to look at a matrix expression such as Eq. (28.7) and quickly see the equivalent
set of differential equations.

The output y in representations 1 or 2 often represents a physical variable
of interest, such as the temperature of a process or the position of a mechanical
system. The alternate state variable representation given by Eqs. (28.3) or Eq.
(28.7) contains two state variables, one of which is y and the other the derivative
of y (i.e., j).  In this case only y may be of interest to the control engineer; j is
available, but may not be of interest since it cannot always be measured easily.
(For example, there is no easy way to measure the rate of change of temperature
if y represents temperature.)

State-Space Description
In general, a physical system can be described by state variables as follows

il  =  fl(XlJ29  .  .  .,X,,Ul,U2,  .  .  .,u,)

f 2  =  f2(XlJZt  .  .  * ,X,,Ul,U2,  .  .  .  ,u,) (28.8)

xn = fn(XlJ2,  f .  .,X,,Ul,U2,  f .  .,u,>
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where xl,  ~2,. . . ,x,  are n state variables and u r , ~2, . . . ,um  are m inputs or
forcing terms. The above set of equations may be written as a matrix expression
as follows

i = f(x,  u)

If the system parameters vary with time, the vectorfwill contain explicit functions
of time. An example for an element off might be the expression on the right side
of the following equation:

ii1 = 2txt  + X2 -f  u1+  U2

In this chapter, we shall be concerned with time-invariant systems for which ii
is a linear combination of state variables and the coefficients are constant. For the
time-invariant case, we may write the general term ii in Eq. (28.8) as follows:

ii = UilXl + lZi2X2  + “’ + UinXn  + bilZ.41 + ‘.‘+  bimk!m (28.9)

for i = 1,2,3,  . . . . n

The equivalent matrix expression for Eq. (28.9) is

il a11 a12 . . . ah

i2 a21 a22 . . . a2n
=

-xfl- _ ad an2 . . . arm

I

hl b12 . . . blm

b21 b22 . . . hm
+ . * . . .

b,,z  . . . b,,

Writing this in the more compact matrix form, we have

i = Ax + Bu

Xl

x2

XII

Ul

u2

urn

(28.10)

(28.11)

In this expression, there are m different inputs where m 5 n. The nature of
the linear physical system expressed by Eq. (28.11) is completely stated by the
matrices A and B. For the time-invariant system, the elements of A and B are
constants.

The outputs of interest to the control engineer may differ from the state
variables (xi). The most general statement for relating the output to the state
variables is

y = cx (28.12)

where y is the vector of outputs (yt, ~2, . . . , yP) chosen by the control engineer
for some practical reason. The matrix C is a p x it matrix containing constant
elements. The way in which the matrix C is selected will be clarified in the
example to follow. In summary, the state-space description for a linear time-
invariant system is given by Eqs. (28.11) and (28.12).
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Example 28.1. For the two-tank noninteracting liquid level system shown in Fig.
28.1, obtain the state-space description as expressed by Eqs. (28.11) and (28.12).
The output y of interest is the level in tank 2. Notice that streams enter both tanks.

For this example, let the state variables be the physical variables h r and h  2,
which are the levels in tanks 1 and 2. These state variables am called physical
variables because they can be easily measured or observed. (In another example,
we shall consider a different set of state variables.)

For the liquid-level system shown in Fig. 28.1 we may write

o r

dhl 1
dt = RlAl

--hl + -$q

dh2  1
-hl -

1
dr = RlA2

-hz + $4,
A&

These equations can be written as follows

1;  = Ah+Bu
where

h = A =

- 1

RlAl
0

B =
1 - 1- -

RIAZ RzA2.

4 2

FIGURE28-1FIGURE28-1
Liquid-level system for Examples 28.1 and 28.2:Liquid-level system for Examples 28.1 and 28.2:

r 1
A1

0

0

1

A2

(28.13)

(28.14)

(28.15)

(28.16)

(28.17)

Al = l,A2  = 0.5, R, = 0.5, R2 = 2l3
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If the output is to be the level in tank 2 (h2),  we have

y = Ch

where y = yt = h2 C=[O 11

In this case y is a scalar (i.e., a 1 X 1 matrix).
The choice of output can be stated in many ways. Regardless of the choice,

the output is related to the state variables by Eq.  (28.12). To see how the matrix C
depends on the choice of output, consider the following examples:

If y is to be a scalar that is the arithmetic average of the levels in the two
tanks one can show that, C = [0.5 0 . 5 1 .

If the output is to be ht and h2, one can show tha?

1 0
c = I 10 1

Selection of State Variables
To the beginner, the selection of state variables may seem mysterious. The state
variables of a system are the smallest set of variables that contain sufficient infor-
mation to permit all future states to be determined. Although the number of state
variables is fixed, the actual selection of these state variables is not unique. If pos-
sible, it is convenient to choose state variables that are directly related to physical
variables which can be measured or observed (e.g., temperature, level, compo-
sition, position, velocity, etc.) For mechanical systems, transducers are available
for measuring velocity; for this reason, velocity is considered a physical variable.
On the other hand, since the measurement of rate of change of composition is not
easily made, this variable is not usually considered a physical variable.

If one solves a dynamic problem by means of an analog computer or by
means of a simulation language such as TUTSIM or ACSL? which involves
simulated integrator blocks, one legitimate set of state variables is the output
from each integrator.

In the control literature, the types of state variables have been classified as
follows.

1. Physical variables State variables are called physical variables when they
are readily measured and observed (level, temperature, composition, etc.).
Physical variables were discussed at the beginning of this chapter and illustrated
for a liquid-level system in Example 28.1 where x I = h t and x 2 = h2.

2. Phase variables State variables that are chosen to be the dependent variable
and its successive derivatives are called phase variables. Phase variables were

*Although the analog computer will not be discussed in this book, simulation software, such as
TUTSIM or ACSL (Advanced Computer Simulation Language), will be discussed in a later chap-
ter. These simulation languages contain integrator blocks that are  equivalent to the response of an
integrator in an analog computer
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selected at the beginning of this chapter in Eqs.  (28.3~)  and (28.3b)  where
xl = y and x2 = j.

3. Canonical variables If the state variables are selected to be canonical vari-
ables, the result is that the matrix A is diagonal. At this point, it is sufficient
to say that canonical variables are selected as state variables for ease in matrix
computation. In general, the canonical variables are not readily identified with
physical variables.

In addition to the types of state variables listed above, any other legitimate
set of variables can be selected. In Example 28.1, we used physical variables,
namely the levels in the tanks of the liquid-level system. In the next two examples,
the method for selecting state variables will be shown.

Example 28.2. For the two-tank liquid-level system of Example 28.1, shown in
Fig. 28.1, obtain the state-space description as expressed by Qs.  (28.11) and (28.12)
when phase variables are selected for the state variables. To simplify the problem,
let ~2  = 0, i.e., there is only one input ~1.

For the system shown in Fig. 28.1, one can show that

H2h)  _ R2

Ul@> (71s  +  1x72s  +  1)

where ~1 = AlRl  and 72  = AzR2

Introducing the parameters in Fig. 28.1 into Eq. (28.18) gives

HZ(S) 213_

Ul(S) (Is + l)($  + 1)

or

H2(s) 4_

Ul(S) (s  + 2)(s  + 3)

(28.18)

(28 .19)

(28.20)

To obtain the differential equation corresponding to Eq. (28.20),  we cross-multiply
to obtain

(S + 2)(s  + 3)H2 = 4u1

(s2+5s  +6)H2 = 4U1

This may be expressed as the following differential equation:

h2+5h2  +6h2 = 4~1
Let the state variables be the following phase variables:

Xl  = h2

x2  = h2

(28 .21)

(28.22)

(28.23)
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We may now write

ii’1  = x2[= i2]

i2 = 62

Equation (28.2 1) becomes

i2  + 5x2 + 6xl = 4ut

The system can be described by Eqs. (28.24) and (28.26):
”

ii1 = x2

i2  = -6xl -5x2 + 4ul

In terms of a matrix expression, Eqs. (28.27) may be written:

i = Ax+bul

(28.24)

(28.25)

(28.26)

(28.27~)

(28.276)

where A = [-i -i] b  =  [j

If the output y is to be  the level in tank 2,

y = cx

where

c = [l O]

Example 28.3. For the PI control system shown in Fig. 28.2, obtain a state-space
representation in the form of Eq. (28.7); thus

i=Ax+br

where r is a scalar. Let

x1=c * (28.28)

n2 = 2 = fl (28.29)

With this choice of state variables, we have selected phase variables.
From Fig. 28.2, we may write

C(s)-= KP
M(s) (71s  +  1x72s  +  1)

o r

C(s) A-=
M(s) (s + a)(s + b)

(28.30)

FIGURE 28-2
PI Control System for Example 28.3.
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where A = K&Q

u  = l/r1

b = 11~

Cross-multiplying Eq. (28.30) gives

[s*  + (a + b)s  + ab]C(s) = AM(s)

or .

%  + (a + b)k  + abc = Am (28.31)

From Eqs. (28.28),  (28.29),  and (28.31) we obtain

.il = x* (28.32)

i2 = -abxl  - (a + b)x2  + Am (28.33)

We must now obtain the state variables associated with the PI controller. From
Fig. 28.2, we obtain

M(s)  = K (71s  + 1)
E(s)  c 71s

o r

T~sM(s)  = K,qsE(s)  + K,,?(s)

In terms of the time domain, this expression becomes

riz = K,i + (K,/q)e

From the signals entering and leaving the comparator, we may write

e = r - c

(28.34)

or, since x 1 = c, we may write

e=r-xl

and

k=F-fl

Combining Eqs. (28.34) and (28.35) gives

tit  = K,(i - i1) + (KJq)(r - xl)

o r

(28.35~)

(28.35b)

rh = K,f - Kcx2  + (K&)r  - (KcIq)xl (28.36)

At this stage, we are faced with the difficulty of having a derivative term on
the right side of Eq. (28.36). In state-space representation, all variables on the right
side must be state variables, not derivatives of state variables. One way to handle
the present difficulty is to define a new state variable xg; let

o r

xg  = m-Kg (28.37)

i3 = h - K,; (28.38)
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Combining Eqs.  (28.38) and (28.36) leads to

i3  = -(KJq)x1  - Kcx2 + (K&I)r (28.39)
Or

i3 = -ax1  - Kcx2 + cxr (28.40)
where (Y = Kc/r1 -*  7

Summarizing the state variable equations given by Eqs.  (28.32),  (28.33),  and
(28.40) and using the definition of xg in Eq. (28.37) give *

il = x2

i2 =  -abxl - ( a  +  b)x2  +Axg  +AK,r

i3 = -CYX~  - Kcx2 + cxr

where A = K&q

a  =  l/T1 b  =  11~ a = Kc/r,

The A and b terms in x = Ax + br are

If m is required as a function of t, it can always be found by solving Eq. (28.37)
for m; thus

m  =  x3  + K,r

SUMMARY : .
State-space representation is an alternative to the kansfer function representation
of a physical system that we have used up to this point. A transfer function that
relates an output variable to an input variable represents an nth-order differential
equation. In the state-space representation, the &-order  differential equation is
written as n first-order differential equations in terms of n state variables. These
n differential equations can also be written in a more compact form as a matrix
differential equation:

i = Ax + Bu
For an nth-order dynamic system, the number of state variables is fixed

at n, but the selection of the variables is not unique. Of the many sets of state
variables that one can choose, we discussed three sets that are useful in control
theory; namely, physical variables, phase variables, and canonical variables. The
state-space representation gives all of the dynamic detail of a system (e.g., the
dependent variable and its successive derivatives for the case of phase variables).
Whether or not this detail is needed depends on the problem being solved. We
shall see the value of state-space representation in multivariable control and in
nonlinear control in later chapters.
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APPENDIX 28A
ELEMENTARY MATRIX ALGEBRA

The purpose of this section is to provide in a convenient location a review of some
of the elementary operations of matrix algebra for use in state-space methods. It is
expected that the reader has had a course in linear algebra discussing the concepts
of a vector and a matrix and the operations performed on them.

.

VECTORS. An n-dimensional column vector is an ordered series of elements
(numbers): x 1,  ~2,  . . . , x,,  and is written as

Xl

x2
x =

XII

Multiplication of a vector by a scalar (Ax) results in a vector for which each
element is multiplied by A.

MATRICES. A matrix is a rectangular array of elements (numbers) that takes the
form:

Qll a12 . . . Ulm

a22 . . . a2m
A = “f’  . . .

alI1 an2 . . . anm

in which tie elements are written a ij . The subscript i refers to the ith row and j
to the jth column. A is called an n X m matrix where IZ  is the number of rows
and m is the number of columns. If n = m, the matrix is called a square matrix.
If m = 1, the matrix is a column vector (n X 1). If n = 1, the matrix is a row
vector (1 X m).

The transpose of a matrix, AT, is a matrix for which the rows and columns
of the matrix A are interchanged. If the diagonal elements (a ij) of a square matrix
am unity and all off-diagonal elements are zero, then the matrix is called a unit
matrix and is given the symbol I.

If A = AT for a square matrix, the matrix A is said to be symmetrical.
When two matrices are added (or subtracted), the corresponding elements

are added (or subtracted), thus

a11  + hl a12  + b12 . . . aim + blm

a21  + b21 a22  +.!m . . . a2m  + km

A+B= .

an1  + bnl a,,2  + b,,2 . . . anm + brim
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The product of two matrices C = AB is a matrix whose elements are
obtained by the expression

m
Cij  = Ix aikbkj for i = 1 . . . n

k = l

a n d j  =  l...  p

whereAisannXmmatrixandBisanmXpmatrix.ThematrixCisannXp
matrix.

INVERSE OF A MATRIX. The inverse of a matrix is related tb the concept of
division for numbers. The inverse of a number x is written l/x  or x-l.  The
product of a number x and its inverse is equal to unity. The inverse of a matrix
A is written A-’ and the product of a matrix and its inverse is equal to the unit
matrix; thus

A-IA  = I

The expression used for matrix inversion for the examples used in this chapter
takes the form:

A-’ = aiY (28A. 1)

where IAl is the determinant of A and adj A is the adjoint of A. These two terms
will now be described .

The determinant of a matrix IAl  is a scalar which is computed from the
elements of the matrix as follows:

or
I4 = ailAil + aizAi2 + *** + ainAin

L

IAl  = 2aijAij
j=l

for any i (28A.2)

where Aij , the cofactor of the element a ij, is computed as

Aij = (-l)‘+jMij

The determinant Mij is the minor of the element aij  and is defined as
follows. If the row and column containing the element a ij are deleted from a
square matrix A, the determinant of the resulting matrix, which is an (n - 1) X
(n - 1) matrix, is the minor Mij  . An alternate expression for the calculation of a
determinant which uses the elements of a specific column and its cofactors is as
follows:

IAl  = TaijAij
i = l

for any j (28A.3)

A determinant of a matrix with two equal rows or columns is zero.
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We now define the adjoint of a matrix. Let the matrix B be an IZ  X n matrix
whose elements bij are the cofactors Aji of A, i.e., the transpose of the cofactor
matrix. B is the adjoint of A; thus B = adj A = transpose of cofactor matrix
or

41 A21 . . . An1

A12 A22 . . . An2

adj A = . . .. . .. . .

* Al, AZ,,  . . . Ann

Some useful properties of the inverse am
(m)-’  = B-‘A-’
(A-l)T  = (AT)-’

(A-‘)-’  = A

The derivations of relationships presented here, as well as other properties
of matrices, can be found in textbooks on linear algebra (see Anton, 1984).

E X A M P L E S
1. Evaluate the determinant of A for the following matrix

2 3 5

A = 1 o 1

2 1 0

For this problem, we use Eq.  (28A.2) with i = 1 (i.e., use row 1). JAI  = 2[; 3 -3[i A] +q; ;]
IAl = 2UNO) - U)(l)1  - 3U)(O) - UWI + X(l)(l) - (OWI

IAl  = 2(-1) - 3(-2) + 5(1)  =  9

2. Find the inverse of the matrix
2 3

A= I 11 4

adj A
A-’ = IAl

The determinant of A is

(Al  = (2)(4)  - (3)(1)  = 5
The matrix of minors is

I 4 3 2 1 1
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The cofactor matrix is

The adjoint of the matrix, which is the transpose of the cofactor matrix, is

adjA  = [-: -i]

therefore A-l = i [ -: -z] = [-t ’

3. Obtain the inverse of the matrix

One can show that

The cofactor matrix is

The adjoint matrix is

‘2 3 1-

A = 1 2 3

3 1 2

IA/  = 1 8

* 1 7 -5-

-5 1 7

7 -5 1

r 1 - 5

7 1

.,-: -5 7

A-’ = ;

I

7 1

- 5 7

7-

- 5

1

7’

- 5

1

PROBLEMS

28.1. In the liquid level process shown in Fig. p28.1,  the three tanks are interacting. The
process may be described by:

k=Ax+Bu

where x =

Xl

x2 andu=

x3
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Ul

--+A,=1 L$,2 A, =l
-z -z -z

-. 3 -. 3 -. - =-- - -- - -- -- - - - - -

Xl x2 x3

R, =lR, =l R2R, =l
E

1 R3R3
- l

R4 R5

FIGUREP28.1 l

---3 1 0-

A=2-3 2

0 1 - 3

determine values of R3,  Rq,  and Rs. If one of these values of R is negative,
what is your interpretation?

(b) Determine B.
28.2. For the system shown in Fig. P28.2, find A and b in

i = Ax+ bu ,

The tanks are  interacting. The following data apply:

Al  = 1, A2 = f, R1  = A,  R2 = 2, R3 = 1

t
R3

FIGURE P28-2



CHAPTER

29
TRANSFER
FUNCTION
MATRIX

In the previous chapter, we have seen that a linear dynamic system can be ex-
pressed in terms of the following equations

i = Ax+Bu (29.1)
y = cx (29.2)

where x = column vector of n state variables (X 1~2, . . . ,x,)
u = column vector of m inputs or forcing terms (U t ,U  2, . . . ,u  m)
y = column vector of p outputs (yi,y2, , . . ,y,)
A = n X n matrix of coefficients
B = it X m matrix of coefficients
C = p X n matrix of coefficients

One of the objectives of this chapter is to show how one solves Eqs.  (29.1) and
(29.2) in a systematic manner.

Before discussing the solution of the matrix differential equation of Eq.
(29. l), consider the scalar differential equation

dxldt = Ax + Bu (29.3)

In this equation all of the terms are scalars. The solution to Eq. (29.3) can be
written as the sum of the complementary function and the particular integral as
follows:

x ( t )  =  e*‘x(O)  +
I

’ e*(‘-‘)Bu(T)d  7 (29.4)
0

446
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Equation (29.4) is a well known result that has been derived in many books on
the solution of ordinary differential equations.

TRANSITION MATRIX
Let us now turn our attention to the solution of the matrix differential equation

i = Ax (29.5)

This is Eq. (29.1) for the case of no inputs (i.e., u = 0). The initial conditions
for Eq. (29.5) may be expressed as x(O). One can show that the solution to Eq.
(29.5) with initial conditions x(O) is given by

A2
x(t)  = I + At + g2 + . . . + $tk}  x(O)

The infinite series of matrix terms within the braces is given the symbol ek.  This
symbol is chosen to recall that the infinite series of the scalar term ear is

1 + at + gt2  + . . .
ak

+ Etk

Using the symbol ek, we may write Eq. (29.6) as

x(t)  = eA’x(0) (29.7)

The symbol eAr is an IZ  X n matrix in which each element contains a power series
of t. The solution to Eq. (29.1) can be shown to be

. x(t )  =  e*‘x(O)  +
i

’ e*(‘-‘)Bu(T)dT (29.8)
0

Notice that Eq. (29.8) resembles Eq. (29.4),  which is the solution for the scalar
differential equation. Since e Ar is awkward and perhaps misleading as to its nature,
e” is sometimes replaced by +(t); thus

t)(t)  = eAr (transition matrix) (29.9)

Either of the terms +(t) and eAr can be used for the transition matrix. In this
book, we shall use eAr.

Example 29.1. Solution of a matrix differential equation. Solve the following
matrix differential equation

i= - 1 1
0 -2 x+1

where u(t) is a unit-step function and

x(O)  = -:,[ I
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One can show that

,*r = emr ,-t  _  ,-2t

0 e-2r
I

In the next section, the method used to obtain the elements of this matrix will be
developed. Applying Eq.  (29.8) gives

o r

x(t) = [-‘o-,] +[
e-(t--7)  - (33e-2(‘-7)

0*5e-2(‘-7) ]I: 1 f,
o r

x(t)  = 1 0.5 - 2e-’  + 0.5ee2’

0.5 - 0.5ee2’ 1
Determining e *  t

One method for determining the elements of the transition matrix e Ar is to use
Laplace  transforms. Consider the matrix differential equation of JZq.  (29.1)

i = Ax + Bu

If we take the Laplace  transform of each side, we obtain

sX(s) - x(O) = AX(s) + BU(s)

or 1

sX(s)  - AX(s) = x(O) + BU(s)

Solving for X(s) gives

(~1  - A)X(s) = x(O) + BU(s) (29.10)

To obtain an expression for X(s), pre-multiply both sides of Eq. (29.10) by
(81 - A)-‘; thus

(d-  A)-‘@1 - A)X(s) = @I- A)-‘x(O)  + (d-  A)-‘BU(s)

This equation becomes

X(s) = (sI - A)-‘x(O) + (s1  - A)-‘BU(s) (29.11)

To obtain x(t) from Eq. (29.1 l), we may take the inverse transform; thus

x(t) = L-l{  (s1  - A)-‘x(O)} + L-l{  (s1  - A)-‘BU(s)} (29.12)

By comparing Eqs. (29.8) and (29.12),  we see that

eAt  = L-l{  (s1  - A)-‘} (29.13)
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a n d

e*(‘-T)~U(T)dT  = L-’ { ($1 - A)-‘BU(s)} (29.14)

TRANSFER FUNCTION MATRIX
When x(O) = 0, a case frequently used in control applications, we obtain from
Eq.  (29.11) .

X(s) = (sI-  A)-‘BU(s) (29.15)

This may be written

X(s) = G(s)U(s) (29.16)

where

G(s) = @I-  A)-‘B (transfer function matrix) (29.17)

The term G(s) is called the transfer &nction  matrix and serves the same purpose
as the transfer function for the scalar case; namely, it relates a set of state variables
X(s) to a set of inputs U(s).

If we prefer to relate the output to the input as expressed by Eq. (29.2),  we
may proceed as follows.
Taking the Laplace  transform of both sides of Eq. (29.2) gives

Y(s) = CX(s)

Combining Eqs. (29.15) and (29.18) gives
*

We may now write

(29.18)

Y(S) = C(sI-  A)-‘BU(s)

Y(s) = Gl(s)W) (29.19)

where

Gl(s)  = C(sI-  A)-‘B (29.20)

The term Gt(s)  in Eq. (29.20) is also a transfer function matrix that relates
the output vector Y to the input vector U.

Example 29.2. Determine the transfer function matrix for the 2-tank liquid-level
system shown in Fig. 29.1. As developed in Example 28.1 [Eq. (28.17)] of the
previous chapter, this system is described by

li  = Ah+Bu

where

A = [ -f -;I B=[i  ;]
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l

FIGURE 29-1
Liquid-level system for Example
29.2: Al  = 1, A2 = 0 .5 , R1 =
0.5, R2 = 2/3.

From the definition of the transfer function matrix of Eq. (29.17),  we write

G(s) = (sI-A)-‘B ?

The inverse of (~1 - A) is obtained as follows (see Appendix 28A for details
on the inversion of a matrix):

adj(.rI  - A)
(+A)-’  = ,sI-A,

’ ]
s+3

cofactor of (~1  - A) ,=
s-t-3 4

o
s+2 I

We can now find the adjoint:

adj(s1  - A) =
s+3 0

4
s+2 1

The determinant of (~1  - A) is

We can now determine the inverse of (~1 - A).

s+3 0

(sl - A)-1 1 4 s+2= 1
(s + 2)(s + 3)

(29.21)

s+3 0 s+3 0
G(s) I 4 s+2 1 1 0 4=

(s + 2)(s + 3)
[

0 2 =
1 [ 2(s + 2) I

(s + 2)(s + 3)
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Simplifying this expression gives

1
0

G(s) =
s+2

4 2
_ (s + 2)(s  + 3) s+3

From Eq. (29.16) we write

H(s) = G(s)&)

therefore

1
01 Hl@)  HZ(S) 1 = s+2  4 J 2 Ul(S)  U26) 1 (29.22)

_ (s + 2)(s  + 3) s+3

From Eq.  (29.22),  we obtain

HI(S)  = -&MS)
and

4
Hz(s)  = (s + 2)(s  + ,) h(s)  + &uzw

For given inputs, the above equations may be inverted to obtain h  l(t) and h2(t).
For the case of Ul(s) = l/s and Us = 0, we get

1 0.5
HI(S) =  - =

s(s  + 2) s(OSs + 1)

4
H2(s)  = s(s + 2)(s  + 3)

Inversion of HI(S) and Hz(s) gives

hi(f)  = OS(1  - C+)

/q(t)  = (2/3)  1 - 0.5(3e-2’  - 2e-3r
[ )I

The results given above can be obtained, of course, by the methods presented earlier
in this book.

The transition matrix can be obtained by applying Eq. (29.13) to Eq. (29.21):

1

il- s+2

0

,At = L-l

4 -:1(s + 2)(s  + 3) s+3
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Inverting each term in the matrix gives

,At  -
,-2t 0-

qe-2’  - e-3t) e-3t
1

This matrix can be used in Eq. (29.8) to calculate hr(t)  and hz(t).  The result will
be the same as obtained by inversion of Eq,  (29.22).

SUMMARY
‘ L

The matrix differential equation .

i = Ax + Bu

used to describe a control system by the state-space method can be solved for the
vector of state variables (x) by use of the transfer function matrix. It consists of a
matrix of transfer functions that relate the state variables to the inputs. The transfer
function matrix serves the same purpose in a multiple-input multiple-output system
as the transfer function does for a single-input single-output system. The transfer
function matrix is obtained from the matrix differential equatien by application of
Laplace  transforms. *m  .‘*

PROBLEMS
29.1. Determine x(t) for the system

i = Ax + Bu

where  eAr  = e;tI
-,-2t + ,-fit

,-2t 1
0x(O)  = 1[ I u(t)=[;] B=[;

.

:

2
- 4 1



.

* MULTIVARIABLE
CONTROL.

UR to this point, the fundamentals of process dynamics and control have been il-
lustrated by single-input single-output (SISO) systems. The processes encountered
in the real world are usually multiple-input multiple-output systems (MIMO). To
explore these concepts, consider the interacting, two-tank liquid-level system in

7 Rig.” 30.1 where there is one input, the flow to tank 1 (m 1) and one output, the
:‘&vel in tank 2 (hz).  In this figure, h2 is related to m i by a second-order transfer
function. From the point of view of a SISO system, the relation between h2 and
ml may be represented by the block diagram in Fig. 30.lb.  One may place a

feedback control system around the open-loop system of Fig. 30. lb to maintain
control of Hz.,’  ., Now consider the same process of Fig. 30.1 in which there are two inputs

* $n~  .and m2) and two outputs (h i and h2).  This system is shown in Fig. 30.2~.
; A: change in m 1  alone will affect both outputs (h 1 and h2).  A change in rn2
l alone will also change both outputs. (Remember that this is an interacting process
’ .for  which the level in tank. 1 is affected by the level in tank 2.) The interaction

T.  between inputs and outputs can be seen more clearly by the block diagram of Fig.
: ’ 30.2b,  In this diagram, the transfer functions show how the change in one of the
” : inputs affects both of the outputs. For example, if a change occurs in only 441,
‘%he  responses of Hi and Hz are .. ’: /
: / HI(S)’  7 G&)MI(s)

.%.  / i .
,G$  : . . ’ H2(~3  .=  G21bM41(~)s”‘..  ,
$?I’he transfer functions in Fig. 30.2b  will be worked out for a specific set of pro-
\‘:: cess  parameters in Example 30.1. (If the tanks were noninteracting, G 12 = 0, with

.*

k’

;.

453
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L -2- =-

TL-
4

R2

(a) t

FIGURE 30-1
(b)

Single-input single-output system (SISO): (a) two-tank interacting level system, (b)  block diagram
for SISO system.

(4

M l i
A

-I-

G21b)

&(s)
\
I

FIGURE 30-2
(b)

Multiple-input multiple-output system (M&IO):  (a) level process, (b) block diagram.
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the result that a change in flow to tank 2 would not affect H 1.)  If both H 1 and Hz
are to be controlled, a single control loop will not be sufficient; in this case two
control loops are needed. The addition of control loops to the interacting system
will be considered in the next section.

CONTROL OF INTERACTING SYSTEMS
The problem of controlling the outputs of an MIMO system will be discussed
by means of a 2 X 2 system showri in Fig. 30.3. The problem can be extended
to the case of more than two pairs of inputs and outputs by the same procedure
described here. The control objective is to control C 1 and C2 independently, in
spite of changes in Ml and A42 or other load variables not shown. Two  control
loops are added to the diagram of Fig. 30.3 as shown in Fig. 30.4. Each loop
has a block for the controller, the valve, and the measuring element. In principle,
the multiloop control system of Fig. 30.4 will maintain control of Cl and CT.
However, because of the interaction present in the system, a change in RI  will also
cause C2 to vary because a disturbance enters the lower loop through the transfer
function G21.  Because-of interaction, both outputs (Cl and C2) will change if a
change is made in either input alone. If G21  and G12  provide weak interaction, the
two-controller scheme of Fig. 30.4 will give satisfactory control. In the extreme,
if G12  = G21  = 0, we have no interaction and the two control loops are isolated
from each other.

To completely eliminate the interaction between outputs and set points, two
more controllers (cross-controllers) are added to the diagram of Fig. 30.4 to give
the diagram shown in Fig. 30.5. In principle, these cross-controllers can be de-
signed to eliminate interaction. The following analysis, which is expressed in
matrix form, will lead to the method of design for cross-controllers that will

F

eliminate interaction.

Ml j-z--

G21

G12  -
\
I

O--l,

M2 ‘322 *c2

I t

FIGURE303
MIMO system for two pairs of inputs and outputs.
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Cl

I

I

c2

FIGURE 30-4
Multiloop control system with two controllers.

Response of Multiloop Control System .-
From Fig. 30.5, we may write by direct observation the following relationships
in the form of the matrix expression

C = G,M

We also may write from Fig. 30.5

MI  = GvlGcllEl  + GvlGcnE2
M2  = Gv2Gc21El  + Gv~Gcm%

R2 c2

FIGURE. 30-5
Multiloop control system with two primary controllers and two cross-controllers,

(30.2)
(30.3)



MULTIVARIABLE  CONTROL 457

where G,i  and Gv2 are the transfer functions for the valves. Equations (30.2) and
(30.3) may be written in matrix form as

where G,  =

G,  =

E =

M = G,G,E (30.4)

Gvl 0
0 Gv2 1 (valve matrix)

Gcl1 Cc12  l

G Gc22 1 (controller matrix)
c 2 1

El
E2 I

From Fig. 30.5, we write directly

El  = RI -G,lCl (30.5)
E2  = R2 -Gm2C2 (30.6)

where El and E2  are the error signals from the comparators. Equations (30.5) and
(30.6) can be written in the matrix form

E = R-G& (30.7)

where G, =[G;l  GL]
(measuring element matrix)

From Eqs. (30.1) and (30.4),  we obtain

C = G,G,G,E

If we let G, = G,G,G,,  Eq. (30.8) becomes

C = G,E

Combining Eqs. (30.7) and (30.9) gives

C = G,R - G,G,C

(30.8)

(30.9)

(30.10)

We may now solve Eq. (30.10) for C to obtain

C = [I + G,G,]-‘G,R (30.11)

Notice that the closed-loop behavior expressed by this matrix equation is
analogous to the closed-loop response of a SISO system, which may be written

C(s)  = Go(s)
1 + G&G&)

R(s) (30.12)
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:C

FIGURE 30-6
Block diagram for MIMO control sys-
tem in terms of matrix blocks.

l

The matrix term [I+G,G,]-’ is equivalent to the scalar term l/[l  +G,(s)G,(s)].
A block diagram equivalent to the diagram for the MIMO control system in

Fig. 30.5 is shown in Fig. 30.6. In this diagram, the blocks are filled with the
matrices in Eqs. (30.1),  (30.4),  and (30.7). The double line indicates that more
than one variable is being transmitted. Each block contains a matrix of transfer
functions that relates an output vector to an input vector. The diagram can be
simplified by multiplying the three matrices in the forward loop together and
calling the result G,,  as was done to obtain Eq. (30.9). The simplified diagram
is shown in Fig. 30.7.

Noninteracting Control Y-

In order for no interaction to occur between C and R in Fig. 30.5 (i.e., R 1  affects
only C 1 and R2  affects only C2), the off-diagonal elements of [I + G,G,]  -‘GO
in Eq. (30.11) must be zero. Since I and G, are diagonal, [I + G,G,]-‘G,  will
be diagonal if G,  is diagonal. Multiplication of the matrices in the expression for
G,  is now shown:

G,  = G,,G,G,

G,  = [ 2 z] [ Gi’ Gt2] [ 2: 2]

The result of multiplying these matrices gives

G0 = GllGvlGcll  +  GuGv2Gc21  GlGlGcu  +  G2Gv2Gcz
[ G21GvlGcll  + GzGvzGca G2lGvlGcl2 + G&&c22 1 (30.13)

Setting the off-diagonal elements to zero and solving for G,-12  and Cc21  give

G G2Gv2Gcz
c l 2  =  -

GlGvl
(30.14)

G G2lGvlGcll
c21 = -

GzGv2
(30.15)

“7!fzgJTC ;y=;J&Reduced block diagram for MIMO  control system where
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The following example will give some experience with the computations
involved in applying the theory developed so far in this chapter.

Example 30.1. For the two-tank, interacting liquid-level system shown in Fig. 30.8,
develop the block diagram for an MIMO system corresponding to Fig. 30.3.
Material balancesaround  tank 1 and tank 2 give the following differential equations:

Cl - c2 ClAl& = ml - - - -
RI R3

Cl - c2 c2
A&  = rn2  + - - -

RI R2
(30.17)

Introducing the parameters given in Fig. 30.8 into Eqs. (30.16) and (30.17) gives

t1  = ml - 3~1 + 2~2 (30.18)

c2 = 2m2 + 4~1 - 5~2 (30.19)

These equations may be written in matrix form as

- k=Ac+Bm
where

A=[-:  -:]  B=[; ;]

We use Elq. (29.15) to obtain

C(S) = (~1  - A)-‘BM(s)

Writing Eq. (30.20) in the form of Eq. (30.1) gives

C = G,M

(30.20)

where GP  = (81  - A)-‘B
After several steps involving the inversion of @I- A) and multiplying the result of
inversion by B, one gets

S+S 4
Gp 4 + 1= I 2(s 3)

(s + l)(s  + 7)

+

I. r

R3 & R2

(30 .21)

FIGURE 30-8
Process for Example 30.1: Al  =
1, A2  = 1/2, RI = 112, R2 = 2 ,
R3 = 1.
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1.0

0.8

1.0 r

0.6 Cl
c2

0.4

0.8
c2

0.6 Cl
0.4

E
‘

0.20.0
0 1.5 t 3

(a) (b)
FIGURE 30-9
Open-loop response for Example 30.1. (a) Ml = l/s, M2  = 0, (b) M2  = l/s, Mi = 0.

The block diagram can now be drawn as shown in Fig. 30.3 with

S+S
G1l  = (s + I)(s  + 7)

4
G12 = (s + l)(s  + 7)

4
G21 = (s + l)(s + 7)

2(s + 3)
G22 = (s + l)(S-+  7)

Notice that the diagonal elements of GP(s)  are of the form

4s + PI
(s + l)(s  + 7)

These elements, which relate cl to m 1  and c2  to m2,  will produce a second-order
response to a step change in input that has a finite slope at the origin because of
the numerator term s + p . In contrast, the off-diagonal elements have second-order
transfer functions without numerator dynamics, for which case the step response
will be second-order with zero slope at the origin. The responses of ct and c2  for
unit-step changes in ml  and m2 taken separately are shown in Fig. 30.9.

Example 30.2. For the two-tank liquid-level system of Example 30.1, determine the
controller transfer function matrix G, needed to eliminate interaction. The primary
controllers are to be proportional, i.e., Gctt = Kl, G,-22  = K2. The diagram of
the control system is shown in Fig. 30.10. The block labeled controller contains the

FIGURE 30.10
Process for Example 30.2. A1  =
1,  A2 = 112,  RI = ll2, R2 = 2,
R3 = 1,  cc11  = KI, Cm =
K2.
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four transfer functions that am  the elements of G,. In this problem, G, is a unit
diagonal matrix i.e., G,t = G,2 = 1.

From Eqs.  (30.14) and (30.15) we obtain

G GnGc22 4 (s + l)(S + 7)
c l 2  =  - -  =  -

‘%I (s + l)(S + 7)K2 S+5

or

G
-4K2

c l 2  =  -
S+5

(30.22)

G ‘-2lGcll 4 (s + l)(S + 7)
c21 = - - = -

G22 (s + l)(s  + 7)K1 2(s + 3)

or

Gczl = 2 (30.23)

Having found the transfer functions for the cross-controllers, we can now determine
the nature of the uncoupled response of c 1 to a change in r t and of c2  to a change
in r2.

Inserting G,t = G,Q = 1 and the expressions for Gc12  and Gc21  from Eqs.
(30.14) and (30.15) into Eq.  (30.13) gives for G,

G
0

= ‘%Gcll  + GnGcz
I

0
0 GlGcn  + GzzGc22 I

(30.24)

Inserting the appropriate elements of the G, matrix [I$.  (30.21)] and the G,
matrix in Eq.  (30.24) gives after considerable simplification

Kl
I

G, = s + 3 2;2 (decoupled system) (30.25)
0 -

s+5

The block diagram for this decoupled MIMO system is shown in Fig. 30.11.
Assuming that the measurement matrix G, is a unit diagonal matrix, the diagram

Gml 0

o Gm2

Gl

FIGURJI  30-11
Block diagram for decoupled system in Example
30.2.
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l

FIGURE 30-12
Simplified block diagram for Example 30.2.

in Fig. 30.11 can be simplified to the unity feedback diagram of Fig. 30.12. From
Fig. 30.12, we may write directly

C = G,E

E = R - C

therefore C = G,R - G,C

or

O_ ClI[ 1Go22  C2

From this expression, we may write

Solving for Cl(s)  gives

Cl  = GollRl  - GollCl
C2 = Go292  - Go22C2

Inserting Got1  from Eq.  (30.25) gives

Kl

cl(s) = K1s + 3 Rl(s)
1+-

s+3

(30.26)

In a similar way, one can show that

2K2

C2b)  = ’ :;,  R2b) ,(30.27)
1+-

s+5

The result shows that the cross-controllers of Eqs. (30.22) and (30.23) give two
separate noninteracting control loops as shown in Fig. 30.13.

The response of the control system of Fig. 30.10 is shown in Fig. 30.14
for a unit-step change in RI. In Fig. 30.14u, no cross-controllers am  present in
the matrix G,. In Fig. 30.14b, cross-controllers having the transfer functions given
by Eq. (30.22) and (30.23) am  present. As expected, for the case of no cross-
controllers, one sees from Fig. 30.14~ that a request for a unit-step change in r 1
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causes both cl  and c2 to change. For the  case where cross-controllers are present,
one sees from Fig. 30.14b that a change in r i does not affect c2  as demanded by
a decoupled system.

To avoid the offset associated with proportional control, we can use PI
controllers for the primary controllers for the decoupled system. To study the
effect of PI controllers for the decoupled system, let

and Gc22

For this case, the cross-controller transfer functions may be obtained from, Eqs.
(30.14) and (30.15); the results are

G c l 2  =
-4Ws + 1) and

s(s  +  5 )

G -2K1(s + 1)
c21 =

s(s  + 3)

A simulation using these four controller transfer functions with K1 = K2 = 4 is
shown in Fig. 30.15. From the transient response, we see that ci  moves toward
the set point of 1.0 and that c2  does not change, as is expected for a decoupled
system.

l.Or 1.0 r

;;I-, .,i-
0 1.5 3' '0 1.5 3'

(0) (b)
FIGURE 30-14
Response for control system in Example 30.2 for R1  = l/s,  Rz = 0, Ccl1  = K1  = 4, GC22  =
KZ = 4. (a) no cross-controllers, (b) cross-controllers present.
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Cougnanowr
1.0,

.

Response of decoupled control system in Example 30.2
for PI primary controllers: Gcll = Gc22 = 4(1 + l/s),
RI  = l/s,  R2  = 0.

STABILITY OF MULTIVARIABLE SYSTEMS
Determining the stability for a multivariable control system, such as the one in
Fig. 30.4 or Fig. 30.5, can be much more complicated than for an SISO system.
The transfer function for the closed-loop response of an MIMO system is given
by Eq. (30.11):

C = [I + G,G,]-‘G,R

To invert this expression, we write

c = a4 [I + GG,lG,R
II+ G&z 1

(30.28)

The numerator of this expression is an n X n matrix; the denominator is a
nth order polynomial. To simplify the following argument, let the matrix in Eq.
(30.28) be 2 X 2. Let the elements of the numerator, after expansion, be written
as follows:

adj[I + GGJGoR  = 1
Let the elements of G,G,  be written as follows:

(30.29)

(30.30)

Expansion of the determinant in Eq. (30.28),  using Eq. (30.30),  is shown below

II+ G,G,[  = ’ + a11(s)  1 yl;z’,s)
cyZl(S)

o r

11 + GGnI = [l + ~II(s)IU + a22G)l  - ~12(sb21(s) (30.31)

Equation (30.31) is a polynomial expression, for which the order will depend on
the order of the transfer functions in G, and G,. Equation (30.28) can now be
written in terms of the expansions shown in Eqs. (30.29) and (30.31) as follows:



MUU’NARIABLE  CONTROL 465

Since each term contains the polynomial II + G,G,  I in the denominator, the
stability of the multivariable system will depend on the roots of the polynomial
equation

II+G,G,)  = o (characteristic equation) (30.32)

Equation (30.32) is the characteristic equation of the multivariable system.
Although Eq. (30.32) has been derived here for the case where G,G,  is a 2 X
2 matrix, one can show that Eq. (30.32) applies to the general MIMO system
of Fig. 30.7 in which G,G,  is a matrix of any size (n X n). If the roots of
the characteristic equation are in the left half of the complex plane, we know
that the system is stable. One method to be used for examining the stability of a
multivariable system is to apply the Routh test to the characteristic equation of Eq.
(30.32). In practice, the characteristic equation can be of high order for a simple
2 X 2 multivariable control system. Example 30.3 illustrates the determination of
stability for a multivariable control system.

Example 30.3. For the control system of Example 30.2, which is shown in Fig.
30.10, determine stability for the case where G,.tl = K1, Gc22 = K2, and there
are no cross-controllers present (i.e., Gct2  = Gc21  = 0) also let G, and G, be
unit matrices. From Example 30.1, we have for the elements of G,

S+5 4
G1l = (s + l)(s  + 7) G12 = (s + I)(s + 7)

4
G21 = (s + l)(s  + 7)

2(s + 3)
G22 = (s + l)(s  + 7)

Since G, = I, G, = G,G,.  Since G, = I, the characteristic equation of Eq.
(30.32) can now be written as

II+G,G,I  =  0 (30.33)

Introducing the elements of the matrices G, and G, into Eq. (30.33) gives, after
expansion of the determinant

[(s + l)(s  + 7)+ Kl(s + 5)][(s  + l)(s  + 7) + 2K2(s + 3)] - 16K1K2  = 0

For given values of K1 and K2, this expression can be expanded into a fourth
order polynomial equation of the form

s4  + crs3  + ,Gs2  + ys  + A = 0 (30.34)

where (Y,  p , y, and A will include the gains K 1 and K2.
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The Routh test can be applied to Eq. (30.34) to determine whether or not the system
is stable. From this simple example, the reader can appreciate the algebraic tedium
that may be needed to determine the stability of a multivariable system.

One way to express the stability of this system is to plot the stability boundaries
on a graph of K1  versus K2.  The region within the boundaries gives the combinations
of values of K1  and K-J  for which the system is stable. Since the details of stability
boundaries is beyond the scope of this chapter, the reader may consult Seborg,
Edgar, and Mellichamp (1989) for examples of stability boundaries for multivariable
systems.

SUMMARY
Most of the systems encountered are multiple-input multiple-output (MIMO) sys-
tems. Such systems have several inputs and several outputs that are often inter-
acting, meaning that a disturbance at any input causes a response in some or all
of the outputs. This interaction in an MIMO system makes control and stability
analysis of the system very complicated compared to a single-input single-output
(SISO) system. A convenient way to describe an MIMO system is by means of
a block diagram in which each block contains a matrix of transfer functions that
relates an input vector to an output vector.

It is often desirable to have a control system decoupled so that certain outputs
can be controlled independently of other outputs. A systematic procedure was
described for decoupling a control system by including cross-controllers along
with the principal controllers. This approach to decoupling requires an accurate
model of the system; the number of controllers (principal controllers and cross-
controllers) increases rapidly with the number of inputs and outputs. A system
represented by two inputs and two outputs requires as many as four controllers; a
system of three inputs and three outputs requires as many as nine controllers, and
so on.

The characteristic equation for a multivariable control system, from which
one can determine stability by examining its roots, can be of high order for
a relatively simple system. Expressing stability boundaries in terms of controller
parameters becomes complex because of the large number of controller parameters
that can be adjusted.

PROBLEMS
30.1. For the liquid-level system shown in Fig. P30.1  determine the cross-controller trans-

fer functions that will decouple the system. Fill in each block of the diagram shown
in Fig. 30.5 with a tmnsfer function obtained from an analysis of the control system.
The transfer function for each feedback measuring element is unity. The following
data apply:

A1  = 1, A2  = 0.5, Resl  = 0.5, Res2  = 213, G,-11 = Kl, Gc22  = K2

The resistance on the outlet of a tank has been denoted by Res to avoid confusion
with the symbol for set point (R).
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Res 2 FIGURE P30-1

30.2. (a) For the interacting liquid-level system shown in Fig. P30.2, draw very neatly
a block diagram that corresponds to Fig. 30.4. Each block should contain a
transfer function obtained from an analysis of the liquid-level system. There
are no cross-controllers in this system. The transfer function for each feedback
element is unity. The following data apply:

Al  = l,A2 = 1/2, Rest = 1/2,  Res;!  = 2, Res.3  = 1

(b) Obtain the characteristic equation of this system in the form

s”  + (yp-1  + pp-2  + . . . = 0

Obtain expressions for CY, p, etc. in terms of K2,  (Kl  = 1)
(c) How would you determine stability limits for this interacting control system?

Propor t iona l  cont ro l le r Propor t iona l  cont ro l le r
- R. I I

Kl~Kll=l  ) t-"' R2A 1 K2~K22

FIGURE P30-2
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CHAPTER

31
EXAMPLES

OF NONLINEAR
SYSTEMS

In the previous chapters, we have confined our attention to the behavior of lin-
ear systems or to the analysis of linearized equations representative of nonlinear
systems in the vicinity of the steady-state condition. While much useful informa-
tion can be obtained from such analysis, it frequently is desirable or necessary to
consider nonlinearities in control system design.

No real physical system is truly linear, particularly over a wide range of
operating variables. Hence, to be complete, a control system design should allow
for the possibility of a large deviation from steady-state behavior and resulting
nonlinear behavior. The purpose of the next three chapters is to introduce some of
the tools that can be used for this purpose and to indicate some of the complications
that arise when nonlinear systems are considered.

DEFINITION OF A NONLINEAR SYSTEM
A nonlinear system is one for which the principle of superposition does not apply.
Thus, by superposition, the response of a linear system to the sum of two inputs
is the same as the sum of the responses to the individual inputs. This behavior,
which allows us to characterize completely a linear system by a transfer function,
is not true of nonlinear systems.

As an example, consider a liquid-level system. If the outflow is proportional
to the square root of the tank level, superposition does not hold and the system
is nonlinear. If the tank will always operate near the steady-state condition, the
square-root behavior may be adequately represented by a straight line and super-

471
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FIGURE 31-1
Distance-time plot for moon rocket.

position applied, as we have done before. On the other hand, if the tank level
should fall to half the steady-state value, we would no longer expect the transfer
function derived on the linearized basis to apply. The analysis becomes more
complicated, as we shall see in our introduction to the study of nonlinear systems.

THE PHASE PLANE
The analysis of nonlinear dynamic systems may often be conceptually simplified
by changing to a coordinate system known as phase space. In this coordinate
system, time no longer appears explicitly, it being replaced by some other property
of the system. For example, consider the flight of a rocket to the moon. In a grossly
oversimplified manner, we may describe this motion by a plot of the distance of
the rocket from the moon versus time. If all goes well, we would like such a plot
to resemble Fig. 31.1. Note the initial acceleration during launch and the final
deceleration at landing. We may, however, also represent this motion by a plot
of rocket velocity versus distance from moon. This plot is shown in Fig. 31.2,
where velocity is defined as d(distance  from moon)/&.  Figure 31.2 is called a
phase diagram of the rocket motion. Time now appears merely as a parameter
along the curve of the rocket motion. It has been replaced as a coordinate by
the rocket velocity. Although in the present example Fig. 31.2 may not be of
significant advantage over Fig. 3 1.1, we shall find phase diagrams very helpful
in the analysis of certain nonlinear control systems.

To begin our study of phase diagrams, we convert a linear motion studied
previously in Chap. 8 to the phase plane. The linear motion will be that of the
spring-mass-damper system.

Oistanc*  moon $arth

s

FIGURE 31-2
Velocity-distance plot for moon rocket.
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PHASE-PLANE ANALYSIS
OF DAMPED OSCILLATOR
The differential equation describing the motion of the system of Fig. 8.1 in re-
sponse to a unit-step function is

,d2Y

7s
+2g+r=  1 (31.1)

Equation (31.1) has previously been solved to yield the motion in the form of
Y(t) versus t as shown in Fig. 8.2. For phase analysis, however, we want the
motion in terms of velocity versus position, Y versus Y, where the dot notation is
used to indicate differentiation with respect to t.  Hence, we rewrite Eq. (3 1.1) as

dk -Y -2579  +1-=
dt 72

(31.2)

It is usually convenient in phase-plane analysis to write the variables in terms of
deviation about the final condition. In this case, the spring will ultimately come
to rest at Y = 1. Hence we define

X = Y - 1

i=jJ

Then, Eq. (31.2) becomes

dX-=
dt

x

di -x -2&k-=
dt 72

(31.3)

These are now viewed as two simultaneous, first-order differential equations in
the variables X and X.

To solve E&s.  (3 1.3),  we may use the methods presented in Chaps. 28 and
29. For this purpose, let Xr  = X and X2  = X. Eqs. (31.3) may be written in the
form

k=AX (31.4)

whereX=[i:]  A = [  i $1

Equation (31.4) is in the standard form of a matrix differential equation
[Eq. (28.7)].  Notice that the term bu of Eq. (28.7) is not present because no
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forcing term is present in Eqs. (3 1.3):  Equation (3 1.4) may be solved by use of
Eq. (29.7):

X(t) = eA’X(0) (29.7)

where eAr = L-‘((~1  - A)-‘} (29.13)

Following the usual steps required to solve these equations gives the result

Xl  = X = Clesl’  + C2eS2’
X2  = X = slCle ‘lr + s2C2es2t

(31.5)

where Ci = s2xo -  xo

s2  -  Sl

c2  = xo -  SlXO

s2  -  Sl

and Xc and Xa are the initial conditions; thus Xa  = X(O) and Xa  = X(O). The
terms st  and s2  are the roots of the characteristic equation

Isl-Al=  0 - (31.6)

Expanding this equation gives

T2S2  + 25rs + 1 = 0

This quadratic equation has two roots:

s12  = -!c*  m
7

If we take s2  as the root with the positive sign

s2= -r+m
7

the constants take the form

cl=  T
2Jm

(SZXO  -  Xo)

c2= T
2Jn

(io  -  Gfo)

(31.7)

Equations (31.5) and (31.7) together give X(t) and X(t) for all possible
initial conditions Xa and Xa.  For a given set of initial conditions, we compute
C 1 and C2 from (3 1.7)) and then each value of t in Eq. (3 1.5) yields a pair
of values for X and X. These may be plotted as a point on an XX diagram
(i.e., a phase plane). the locus of these points as t varies from zero to infinity
@ll be a curve in the XX plane. As an example, consider the case Xc = - 1,
Xa = 0, C < 1. The solution is already known to us in the form of X versus
t (Chap. 8) and is replotted in Fig. 3 1.3 for convenience, together with a plot of X
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‘b=- FIGURE  31-3
1 Apical motion of second-order system.

versus t. If these curves are replotted as X versus X, with t as a parameter,
the result is as shown  in Fig. 31.4. The reader should carefully compare Figs.
3 1.3 and 3 1.4 to be satisfied that they ate indeed equivalent. The relationship
between the two may be expressed by the statement that Fig. 3 1.3 is a parametric
representation of Fig. 31.4. Having only the curve X versus t of Fig. 3 1.3, one
can construct Fig. 31.4.

To explore the phase-diagram concept further, note that division of the second
of Eqs. (31.3) by the first yields

di - x  - 2&i-=
dX 72i

(31.8)

in which the variable t has been eliminated. Equation (3 1.8) may be recognized as
a homogeneous first-order differential equation. Hence, the substitution X = VX
yields

XdV- = -l-w-v=-(l  + 25?V  + ?V)
dX TW TW

an equation which is separable in X and V. This can then be easily solved for V
in terms of X. Finally, replacing V = X/X gives the solution for X versus X, or

at origin

FIGURE 31-4
Phase plane corresponding to motion of Fig. 3 1.3.
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FIGURE 31-5
Interpolation on the phase plane.

the equation for the curve of Fig. 31.4. The algebraic details of this rather tedious
process are omitted. (See Graham and McRuer,  1961, pp. 287-289.) The point
of the discussion is to emphasize further the equivalence between the description
of the motion as X versus t or X versus X.

A convenient feature of the phase diagram is that several motions, corre-
sponding to different initial conditions, can be readily plotted on the same diagram.
Thus, if we add to Fig. 31.4 a curve for the motion under the initial condition
Xc = 1, Xa = 0, we obtain Fig. 31.5. This new trajectory represents the motion
of the system after it is stretched 2 units and released from rest. (This follows from
the definition X = Y - 1.) Furthermore, we have also interpolated in Fig. 31.5
to obtain the motion corresponding to Xc  = 0, Xc  = 1. As we shall see later,
this interpolation is justified. Hence, it is evident that the phase diagram gives us
the “big picture” of the motion of the underdamped spring-mass-damper system.
No matter where the system starts, it spirals to the condition XO  = Xc = 0, the
steady-state position. This spiral motion in the phase plane corresponds to the
oscillatory nature of the X versus t curve of Fig. 31.3.

Before beginning a more detailed study of the mechanics of phase analysis, it
may be worthwhile to see how situations amenable to such analysis arise naturally
in the physical world.

MOTION  OF A PENDULUM
Consider the pendulum of Fig. 31.6. As the pendulum is moving in the direction
shown, there are two forces acting to oppose its motion. These forces, which
act tangentially to the circle of motion, are (1) the gravitational force mg sin
13  and (2) the friction in the pivot, which we suppose to be proportional to the
tangential velocity of the mass, BR(d&dt).  We shall assume the air resistance
to be negligible and the rod to be of negligible mass. Application of Newton’s
second law gives

d20-mR-  =
dt2

mg sin9 + BR$
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Pivot

w
FIGURE 31-6
Forces acting on pendulum.

Rearrangement leads to
d29-+Dg+oisinB  = 0
dt2

(31.9)

B
where D = - _

m

This equation resembles the equation for the motion of the spring-mass-damper
system. However, the presence of the term involving sin 8 makes the equation
nonlinear.

Equation (31.9) has the following form in phase coordinates:

de i-=
d t

da,-=
dt

-ozsin  8 - 06

(31.10)

and a phase diagram would be a plot of angular velocity 8r versus position 8.  At
this point, we can gain some insight by simple analysis of Eq. (31.10) without
actually obtaining a solution.

Referring for the moment back to the spring-mass:damper  system, we saw
that the system ceased to oscillate when the point X = X = 0 was reached. That
is, all curves stopped at the origin of Fig. 3 1 S. The reason for this is quite clear;
when X = X = 0 is substituted into Eqs. (31.3),  there is obtained

dX  di o-E-Z
dt dt

Since neither X nor X is changing with time, the motion ceases. Further examina-
tion of Eqs. (31.3) shows that X = X = 0 is the only point at which both dX/dt
and dildt  are zero. Thus, we see that the mass will come to rest only when the
situation of zero displacement and zero velocity is reached.
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Now we perform a similar analysis on Eqs. (31.10). we  are asking the
following question: At what point or points in the phase plane (0 versus 8 diagram)
do both dl-lldt  and dO/dt  become zero? From the first of these equations, we see
that this can happen* only when 8 = 0. Using this result in the second equation,
it can be seen that it is also necessary that

sin8 =  0

Equation (3 1.11) is satisfied at any of the points

(31.11)

8 = n7r

where it is a positive or negative integer or zero. However, from a physical
standpoint, we can really distinguish between only two of these points, which we
take as 8 = 0 and 0 = n.  Thus, the positions 8 = 0, 27r,  47r,  -27r,  etc., all
look the same to us; i.e., the pendulum is hanging straight down. Similarly, the
points 8 = 7r,  37r,  etc., all correspond to the pendulum standing straight up.

Thus, the analysis leads to the conclusion that the motion will cease when
the pendulum comes to rest in either of the positions shown in Fig. 31.7. In ad-
dition, it is clear from Eqs. (31.10) that, if the pendulum stops at any other
point, the motion continues. Of course, this analysis agrees with our physical
intuition. However, we expect to find a distinction between the stability char-
acteristics of the two equilibrium points, since the position at r is likely to be
hard to attain and maintain. This distinction will be explored in more detail in
Chap. 32.

*The reader should not be lulled into a false sense of security at this. point. It would be wise to
disregard the fact that dtVdt and ~9 are, in fact, the same quantity; 13 should be thought of as a
coordinate in the phase plane, and dO/dt  as the rate of change with time of the other coordinate.
The virtue of making this distinction will become clear in the next example, a chemical reactor.

FIGURE 31-7
Equilibrium positions for pendulum.
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A CHEMICAL REACTOR
Consider the stirred-tank chemical reactor* of Fig. 3 1.8. The contents of the
reactor are assumed to be perfectly mixed, and the reaction taking place is

A+B (31.12)
which occurs at a rate

RA  = kCAe-E’RT (31.13)

where RA  = moles of A decomposing per hour per cubic foot of reacting mixture
k = reaction velocity constant, hr-’

CA  = concentration of A in reacting mixture, moles/ft3
E = activation energy, a constant, Btu/mole
R = universal gas law constant
T = absolute temperature of reacting mixture

The reaction is exothermic; AH Btu of heat are generated for each mole
of A that reacts. Hence, in order to control the reactor, cooling water is supplied
to a cooling coil. The actual reactor temperature is compared with a set point,
and the rate of cooling-water flow adjusted accordingly. To indicate this control
mathematically, we write that Q(T) Btu/hr  of heat are removed through the cooling
coil. In Chap. 32 we shall make a more detailed analysis of the dynamic behavior
of the reactor. For the present preliminary analysis, it is not necessary to look
carefully at Q(T), and hence it is merely assumed that, as T rises, more heat is
removed in the coil.

Let xb  = mole fraction of A in feed stream

xBo = mole fraction of B in feed stream

*This example is based on the work of R. Aris and N. R. Amundson (1958).

Feed: reactant

Reaction A+B

_- - -

* Product

FIGURE 31-8
Schematic of exothermic chemical reactor.
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Then (1 - ~4 - x~,) is the fraction of inerts in the feed stream. A mass balance
on A,

(A in feed) - (A in product) - (A reacting) = (A accumulating in reactor)

takes the form

FpxA, - F~XA  - kpVe -EIRTXA  = pv$h (31.14)

where F = feed rate, ft3/hr
XA = mole fraction of A in reactor

p = density of reacting mixture, moles/ft3
V = volume of reacting mixture, ft3

To arrive at Eq. (31.14) we have used Eq. (31.13) and made the following as-
sumptions:

1. The density of the reacting mixture is constant, unaffected by the conversion
of A to B.

-2. The feed and product rates F are equal and constant.
3. Together, 1 and 2 imply that V, the volume of reacting mixture, is constant.
4. Perfect mixing occurs, so that XA is the same in the reactor and product stream.

A similar mass balance may be derived for substance B. However, Eq. (31.12)
shows that one mole of B appears for every mole of A destroyed. Hence

XB  - XB,,  = XA,, - XA (31.15)

Equation (3 1.15) permits us to circumvent the mass balance for x B, since knowing
XA we can calculate xs directly.

The energy balance on the reactor

(Sensible heat in feed) - (sensible heat in product)
+ (heat generated by reaction) - (heat removed in cooling coil)

= (energy accumulating in reactor)

can be written as

FpC,(To - T) + kpV(AH)erEfRTxA - Q(T) = PVC,: (31.16)

where TO  = temperature of feed stream
T = temperature in reactor

C, = specific heat of reacting mixture

In writing Eq. (31.16),  it is assumed that

1. The specific heat of the reacting mixture is constant, unaffected by the con-
version of A to B.
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2. ?he perfect mixing means that the temperatures of the reacting mixture and
product stream are the same.

3. The heat of reaction AH is constant, independent of temperature and compo-
sition.

We remark here that these assumptions, as well as those made in Eq. (31.14),
may be relaxed without affecting the conceptual aspects of the phase analysis.
They are made only to keep the example as uncluttered as possible, without being
trivial.

Equations (3 1.14)

dXA
dt=
dT
dt=

and (3 1.16) may be rearranged to the system

xh - XA) - ke-E’RTXA

!?(To _ T) + Fe-EfRTxA  - f$
P P

(31.17)

As a typical application of this system of equations, we might consider starting
up the reactor, initially filled with a mixture at composition x~(0)  and temperature
T(O). Suppose the feed rate, feed composition, feed temperature, and flow rate
of cooling water are held constant and the reactor is operated in this manner
until steady state is reached. To describe the transient behavior of the chemical
reactor, one can solve Eqs . (3 1.17) by integrating them numerically, using a typical
stepwise  procedure such as the Euler or Runge-Kutta method. This will result in
functions XA(t) and T(t) for values of t from  zero to some value (if one exists)
at which, for practical purposes, XA(t) and T(t) cease to change with t.

Alternatively, we may consider a phase-plane analysis of Eqs. (31.17) and
seek solutions in the form of XA versus T curves. Note that division of the first
of Eqs.  (3 I. 17) by the second gives

dXA
dT=

(FIV)(x,+,  - XA)  - ke-E’RTxA

(FIV)(To  - T) + ve-E’RTxA  - p
(31.18)

P P

The parameter t has been eliminated in Eq. (3 1.18),  which is simply a differential
equation relating XA and T. As we shall see in Chap. 32, this phase-plane analysis
of the chemical reactor offers significant advantages over the ordinary analysis.

In the chemical reactor, we no longer have the special relationship among
the phase variables that we had in both previous cases. For both the spring and
pendulum problems, we more or less artificially changed a second-order differen-
tial equation to two first-order equations by introducing the phase variable X (or
0).  This phase variable was directly related to the other phase variable X (or 19)
by the equation

J&dx
dt

For the chemical reactor, there is no such simple relation between x,+  and T.
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We can study the steady-state solutions  to Eqs. (31.17) without solving
the equations, much as was done in the case of the damped pendulum of the
previous example. As before, we note that steady state requires that XA  and T
simultaneously cease to change with time,

dx/,  dT 0
dt=dt=

From Eqs. (3 1.17),  this implies that

$A” - XA~)  - ke-EfRTsxA, =  0

F(To  - T,) + Cek(AH)  -EIRTsXA QV’s)  o
(31.19)

- - =5
P PVC,

where X,.&  and T, are the steady-state values of XA and T.
The first of Eqs. (3 1.19) can be solved for X,&,  yielding

1
X AS = xAo  1 + (kV/F)e-EIRTs .

Substitution of (3 1.20) into the second of Eqs. (3 1.19) yields

k(AH)x,.&,
eEIRTs  + RVIF

= e(T,)  + F(T  - To)
PVC, v  s

(31.21)

Equation (3 1.21) is implicit in T, , the steady-state temperature. In physical terms,
it expresses an equality between the heat generated by the reaction and the heat
removed in the cooling coil and product stream. To emphasize this, we have
arranged it so that the left side is the heat generation and the right side is the heat
removal.

Solution of Eq. (31.21) for T, requires numerical values for the various
parameters. Without going into this much detail at present, we may obtain some
qualitative information. To do this, we sketch the right and left sides of this
equation as functions of T,. A typical shape for the left side is given by the
sigmoidal curve of Fig. 31.9. (See Aris and Amundsen, 1958, p. 121.) The unusual
curvature, of course, is caused by the e E’RTs  term in the denominator. To plot the
right side, we must know Q(T). While we have avoided specifying the form of
Q(T), we know it increases with T. If there were no control action, i.e., if the
flow rate of cooling water were maintained constant regardless of T, then Q(T)
would increase almost linearly with T. This is because at constant water rate, the
heat transfer in the coil is approximately proportional to the difference between
T and the mean temperature of the cooling water. This latter temperature would
not vary so rapidly as T at practical flow rates. However, since we expect to have
control action, we know that the cooling-water flow rate will be increased with
increasing T.  Therefore, Q(T) may be expected to increase faster than linearly
with T, which means that the right side of (31.21) increases faster than linearly.
Several typical curves of this right side are shown in Fig. 31.9.
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Different possible locations
of heat removal

Ts -

FIGURE 31-9
Steady-state generation and re-
moval functions for exothermic
chemical reactor.

A solution of Eq. (3 1.21) requires that the graphs of the right and left
sides intersect. As shown in Fig. 31.9 there may be one, two, or three such
intersections, depending on the relative locations of the heat generation (left side)
and heat removal (right side). This means that there may be one, two, or three
possible steady states for the reactor.

As we shall see in Chap. 32, the steady state actually attained by the re-
actor depends on initial conditions x~(0)  and T(O). The steady-state temperature
T, is then the temperature at the pertinent intersection, and the steady-state com-
position can be determined from Eq. (31.20). We shall also see that some of
the steady states are unstable. In fact, the low-temperature steady state for curve
(c) of Fig. 31.9, occurring as a point of tangency, is to be regarded with suspi-
cion. Practically speaking, a perfect tangency would not occur. Minor variations
in operating conditions (i.e., noise), which occur continually in actual process
operation, may shift the curve (c) slightly to the left or right, resulting in two or
zero low-temperature intersections, respectively.

SUMMARY

In this chapter, we have introduced the concept of a phase analysis and some of its
basic elements. We have seen how physical situations give rise naturally to phase
solutions. Furthermore, we have had our first look at true nonlinear behavior. In
so doing, we have come to at least one interesting conclusion: a nonlinear motion
or control-system response may have more than one steady-state solution. This
was true for the chemical reactor and for the pendulum. In contrast, the linear
motions and control-system responses we studied in the previous chapters had
only one steady-state solution. In the next chapter, we shall discover still more
differences which render nonlinear analysis more difficult than linear analysis.



CHAPTER

32
METHODS OF
PHASE-PLANE
ANALYSIS

The advantages of the phase analysis introduced in Chap. 31 can be more fully
appreciated after some acquaintance with the tools available for such analysis. To
give a detailed exposition of all, or even most, of the aspects of this subject is
not intended. Instead, this chapter strives to indicate its flavor and to stimulate
further study.

PHASE SPACE
In Chapter 3 1, we considered three examples for which the dynamic response can
be described by two state variables. For the cases of the damped oscillator and
the pendulum, the state variables were phase variables in which the dependent
variable and its derivative (X, X or 8, h) were chosen as the state variables. For
the exothermic chemical reactor, the state variables selected were temperature and
composition (T, xA); these variables, which arose naturally in the analysis of the
chemical reactor, were called physical variables in Chap. 28.

In general, an nth-order dynamic system can be described by II  state vari-
ables. The state variables (x 1,  x 2, .  .  . ,x,)  can be located in a coordinate system
called phase space. Each value of t, say t t, defines a point in this space: x i(t I),
x2(t1),  .  .  . ,x,,  (t i). The solution curve is a locus of these points for all values
of t. It is called a trajectory and connects successive states of the system. For

484



METHODS OF PHASE-PLANE ANALYSIS 485
l

the damped oscillator presented in Chap. 3 1, the coordinate system was a plane
with an axis for each state variable; we shall refer to this coordinate system as
a phase plane. Figure 3 1.5 is a typical phase-plane representation of a dynamic
system. When the physical system is third-order, the coordinate system consists
of three axes, one for each state variable. Of course, systems of fourth- or higher-
order require treatment in space that is of too many dimensions to be visualized.
The graphic aspects of phase-space representation are advantageous primarily in
the case of two dimensions (the phase plane) and to a limited extent for three
dimensions. The bulk of practical use of phase-space analysis has been made in
the two-dimensional autonomous (time invariant) case:

dxl
- = fl(Xl,X2)
dt

dx2
- = f2(Xl>X2)
dt

(32.1)

For this reason, we largely confine our attention in the remainder of this study to
systems that may be written in the form of Eqs. (32.1). As we have seen, there
is no loss in conceptial generality, but we cannot expect the graphical aspects
of the material we shall develop to generalize to higher-dimensional phase space.
The solution of the system (32.1) may be presented as a family of trajectories in
the x 2~  r plane. If we am  given the initial conditions

x1(to)  = Xl0

X200)  = x20

the initial state of the system is the point (~10~20)  in the x2x  1 plane and the
trajectory may, in principle, be traced from this point.

By dividing the second of Eqs. (32.1) by the first, we obtain

dx2 f2(XltX2)

2g= flbl,  x2)
(32.2)

Now dxT/dx  1  is merely the slope of a trajectory, since a trajectory is a plot of x 2
versus xi for the system. Hence, at each point in the phase plane (x i,x2), Eq.
(32.2) yields a unique value for the slope of a trajectory through the point, namely,
f2(x 1 ,x2)/fr  (x r ,x2).  This last statement should be amended to exclude any point
(XI,X.L)  at which fi(xi,x2)  and f2(xirx2)  are both zero. These important points
are called critical points and will be examined in more detail below. Since the
slope of the trajectory at a point, say (xi,xz),  is by Eq. (32.2) unique, it is
clear that trajectories cannot intersect except at a critical point, where the slope
is indeterminate.

THE METHOD OF ISOCLINES
Let us now utilize this information about the trajectory slope to approximate the
trajectory. We shall illustrate the technique with an example.
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Example 32.1. Find the trajectory of the system

dxl
dt  = x2

(32.3)
dxz
dt=

-5x1  - 2x2

which passes through the point

Xl  = 1 x2 = 0

The slope of any trajectory is given by

dxz 5x1  + 2x2
djcl=-  n2

We search for all points through which the trajectories must have the same slope. If
this slope is called S, then

- sx1+2x2  s=
x2

_

is the equation that must be satisfied by all points at which the slope is to be S. This
may be rearranged to

-5x1

x2=  s+2

which is the equation of a line through the origin in the x2x r plane. Thus, for
example,

x2 = -xl

is the locus of all points at which the trajectories have slope 3. Similarly, the x 1
axis is the locus of points at which the slope of the trajectory is infinite. Such loci,
which in this special case are straight lines, are called isoclines. Several isoclines,
with the slopes indicated, are plotted on Fig. 32.1.

To sketch the desired trajectory, we first note that it starts at the point (1 ,O).
At this point, according to Eqs. (32.3),

dxl
dt= 0

dxz
dt= -5

Hence, the trajectory starts out vertically downward. Between the isoclines S = 00
and S = 10, the slope of the trajectory must vary between infinity and 10. The
points on the S = 10 isocline, which would be reached if the trajectory had a
constant slope of infinity or 10, are labeled a and b,  respectively, in Fig. 32.1. The
actual point at which the trajectory reaches the S = 10 isocline is taken as midway
between a and b, which is equivalent to an averaging of the slopes. The construction
is continued in this manner, and the trajectory sketched so as to connect the indi-
cated points and to have the correct slope as it passes through each isocline. The short
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FIGURE 32-1
Isocline construction of phase plane for Eqs. (32.3).

dashed marks between isoclines, indicating the correct slope, are also helpful in
satisfying this latter condition.

Another trajectory, starting from the point (-0.6, 0), is shown on Fig. 32.1.
This serves to emphasize that, once the isoclines have been located, interpolation
is possible on the phase plane, and many trajectories representing various initial
conditions are easily visualized or sketched.

There are other graphical techniques for construction of phase portraits.
These are discussed in, for example, Thaler and Pastel (1962). The method of
isoclines is usually suitable when the isocline equation

f2bltX2)  = s

flhl, x2)

is not overly complicated and where a good overall knowledge of the phase plane
is required. In practice, for more complex systems such as the chemical reactor
of Chap. 3 1, the phase plane is often obtained by use of a computer.

Analysis of Critical Points
In the situations of most interest to us, Eq. (32.2) will represent the behavior of
a (nonlinear) control system, as in Eq. (3 1.18). Therefore, we shall be interested
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in maintaining the system at or near a steady state. Since, from Eq. (32.1),  a
steady-state point is defined by

f1(x1,  x2)  =  f2(Xl?  XP)  =  0

it is clear that the steady states are critical points. At the critical points, the slope of
the trajectory is undefined; hence, many trajectories may intersect at these points.
In Fig. 32.1 the origin is a critical point. It can be seen from the isoclines that,
in this case, all trajectories spiral into the origin. Hence, this particular system
is such that, no matter what the initial state (i.e., for any disturbance which is
applied), the system returns to steady state at the critical point.

The critical point of Fig. 32.1 is called a focus, because the trajectories
spiral into it. This spiral motion of the trajectories corresponds to the oscillatory
approach of the system to steady state. The oscillatory motion occurs because the
system of Eqs. (32.3) is underdamped, as indicated by the characteristic equation

Is1 - Al = 0
o r

-.

t
- 1
s+2

=s2+2s+5=o

When put into standard form, -this characteristic equation has parameters

Since C < 1, the system is underdamped.
An overdamped system, such as that generated by the system

dxl
dt  = x2

dx2
- = -5x1  - 6x2
dt

having characteristic equation

s2+6s+5=0

so that

has a critical point such as that of Fig. 32.2~.  Here the trajectories enter the criti-
cal point directly, without oscillation. This type of critical point is called a node.
For comparison, a typical focus is sketched in Fig. 32.2b.  In fact, other types of
behavior may be exhibited by critical points of a second-order system, depending
on the nature of the roots of the characteristic equation. These are summarized
for linear systems in Table 32.1 and sketched in Fig. 32.2. The distinction between



METHODS OF PHASE-PLANE ANALYSIS 489

FIGURE 32-2
Second-order critical points: (a) stable node, (b) stable focus, (c) unstable focus, (d)  unstable node,
(e) saddle point.

stable and unstable nodes or foci is made to indicate that the trajectories move
toward the stable type of critical point and away from the unstable point. The
saddle point arises when the roots of the characteristic equation are real and have
opposite sign. In this case there are only two trajectories that enter the critical
point, and after entering, the trajectories may leave the critical point (permanently)

TABLE 32.1
Classification of critical points

WPe  of
critical point

Characteristic Pertinent
equation values of C

Nature of
roots

Sign of
roots

Stable node 7212  + 2{rs  + 1 = 0 i’l Real Both  -
Stable focus 722 + 2575 + 1 = 0 O<{<l Complex Real parts both -
Unstable focus 7292  + 2lrs  + 1 = 0 -l<l<O Complex Real parts both +
Unstable node $2  + 257s  + 1 = 0 5-c - 1 Real Bo th  +
Saddle point .2s2  + 24.7s  - 1 = 0 All Real One +,  one  -
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on either of two other trajectories. No other trajectory can enter the critical point,
although some approach it very closely.

This categorization of critical points according to the particular linear system
is often of value in the analysis of nonlinear systems. The reason for this is that,
in a sufficiently small vicinity of a critical point, a nonlinear system behaves
approximately linearly. Thus, the system of Eq. (31.10) for the pendulum is
nonlinear. It has two physically distinguishable steady states, corresponding to
the pendulum pointing up or down. The nonlinear term sin 8 may be linearized
around each steady state. Near the steady state at 8 = 0,

and near the steady state at 8 = r,  a Taylor series yields

sin8 = -(e  - 7~)

Therefore, near 8 = 0, Eqs. (31.10) are closely approximated by the linear
equations

de-=
dt

e _

dl)
(32.4)

-=
dt

-028  - Dl,

andnear = n,by
dx .
-=x

dt
di
- = 0,2x  - Di
dt

(32.5)

where x = 8 - rr.  These linearized versions of Eqs. (3 1.10) can be easily solved
to determine the nature of the linear upproximutions  to the critical points. Thus,
the characteristic equation for Eqs. (32.4) is

s*+DS+w*  = 0n (32.6)

while that for Eqs. (32.5) is

s*+DS-w;  = 0 (32.7)

As shown in Table 32.1, Eq. (32.6) yields a stable critical point, which
may be a node or focus depending on the degree of damping. (Note that, as the
damping is increased, the behavior changes from focus to node, or from oscillatory
to nonoscillatory.) On the other hand, Eq. (32.7) indicates a saddle point for the
motion near 8 = ‘TT.

These conclusions apply strictly only to the linearized phase equations, Eqs.
(32.4) and (32.5). To compare them with the behavior of the true system of Eqs.
(3 1. lo), the actual phase diagram is sketched for a lightly damped case in Fig.
32.3. For simplicity, this diagram is extended beyond the range 0 9 8 9 2~
even though this is the only region of physical significance. Actually, the section
for 0 5 8 5 2n should be cut out and rolled into a cylinder so that the lines
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corresponding to 8 = 0 and 8 = 27r coincide. This phase cylinder would more re-
alistically represent the motion of the pendulum. As seen from Fig. 32.3, the point
at 8 = 7~ is, indeed, a saddle point and the point 0 = 0 (or 27r) is a stable focus.
If the system were more heavily damped, this latter point would be a stable node.

A greater understanding of the saddle point may now be obtained by ana-
lyzing the 8 = T point in terms of what we know to be the physical behavior of
the pendulum at this point. That is, the point may be approached from either of
two directions. When the pendulum is at the point, an infinitesimal disturbance
will cause it to fall in either of two directions. Other trajectories narrowly miss
this point, indicating that just the right initial velocity must be imparted to the
pendulum at a given initial point to cause it to stop in the 8 = v position.

In summary, it can be concluded that in this case the linearized equations
give valuable, accurate information about the behavior of the nonlinear system in
the vicinity of the critical points. Because the linearized equations are more easily
solved, it is always desirable to be able to relate the behavior of the actual system
to the behavior of the linearized solutions in the vicinity of the operating point.
In fact, in our previous work on control systems, we have assumed for nonlinear
systems that design of a stable control system based on the linearized equations
was adequate to ensure stable operation of the actual system. The basis for this
assumption is given by the following theorem of Liapunov (see Letov, 1961).

Let the nonlinear equations of a motion be linearized by expansion in devi-
ation variables around a particular critical point. If the linearized solution for the
deviation variables is stable, the actual motion will be stable in some vicinity of
the critical point. If the. linearized solution is neutrally stable (i.e., its character-
istic equation has roots on the imaginary axis), no statement can be made about
the actual motion. If the linearized solution is unstable, then the actual motion
will be unstable.

It is necessary to define what is meant by stability and instability of the
actual nonlinear motion in the vicinity of the critical point. Although stability in
nonlinear systems is a complex subject, for our purposes it will suffice to state
that a stable nonlinear motion in the vicinity of a critical point is one for which all
phase-plane trajectories in this vicinity travel toward and end at the critical point.
An unstable motion is one for which trajectories move away from the critical point.
This would mean that, while theoretically the state of the system may remain at
the critical point indefinitely, any slight disturbance causes the unstable system

FIGURE 32-3
I Phase portrait of lightly damped pendulum.
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to move away from the critical point. These conclusions agree with our physical
understanding of the pendulum motion, since the steady condition at 8 = ‘TT  is
easily destroyed.

It is because of Liapunov’s theorem that linear control theory is so successful
in control system design. One really hopes to control the system so that it remains
permanently in the vicinity of a particular point (i.e., a steady state). However,
when serious upsets occur in an automatically controlled plant, moving it far from
steady state, it is often necessary to return the plant to manual control until condi-
tions are again close to steady state. This is because the controllers are designed
for satisfactory operation in the linear range only. One of the great drawbacks of
linear control theory is the fact that stability of the linearized equations guarantees
stability of the nonlinear system only in some vicinity of the particular critical
point. No information about the size of this vicinity or about the behavior outside
this vicinity is obtained. If the linear vicinity is extremely small, then unknown
to the designer who has used linear methods, almost any plant disturbance of
practical size may result in control system failure. An example of this behavior
will be given later.

Limit Cycles
The first major difference between linear and nonlinear motions is the possible
existence of more than one critical point in the latter type. The second is the
possible existence of limit cycles.

A limit cycle is defined as a periodic oscillation whose amplitude and fre-
quency depend only on the properties of the system and not on the initial state
of the system (provided the initial state lies in a certain non-trivial region of the
phase space). In the phase plane, stable  limit cycles are recognized as closed
curves which are approached asymptotically by all nearby trajectories. Unstable
limit cycles are closed curves from which all nearby trajectories diverge. An ex-
ample of a stable limit cycle is the “steady-state” behavior of a home heating
system when controlled by a thermostat. A periodic oscillation in house temper-
ature is always reached, and the amplitude and frequency of the oscillation am
independent of the temperature that existed in the house at the time that the fur-
nace was started. Unstable limit cycles can never be realized physically for any
system by definition. However, as will be seen later, they divide the phase plane
into regions of totally different dynamic behavior and hence are of considerable
importance.

It is important to distinguish between limit cycles and other closed curves
which may occur. The linear system

d2x
T2-+x=o

dt2

has phase-space solution

x2 + T*(i)*  = c2 (32.8)
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where i = dxldt and the constant C depends on initial conditions. Equation
(32.8) defines a family of concentric ellipses in the phase plane. However, these
are not limit cycles, because the closed curve which is followed by the system
depends on the initial state of the system through the constant C. In the next
section, we shall study some limit cycles occurring in typical control systems.

OTHER ASPECTS. We have presented only those aspects of phase-plane analysis
that will be of use in the examples to follow. This can be considered only as a brief
introduction to the subject, and the intetested  reader is referred to the references
already cited for more information. Among the important subjects that have been
omitted are graphical methods for determination of time along a trajectory, various
aspects of phase-plane topology, and the mathematical aspects of stability.

EXAMPLES OF PHASE-PLANE ANALYSIS
In this section, we shall consider two different examples of the use of the phase
plane to analyze nonlinear control systems. The first is a simple on-off control
system for a stirred-tank heater. The second is the chemical teactor  of Chap. 3 1.
In both cases, the  systems am second-order and autonomous, so that they ate ideal
situations for use of the phase plane.

On-Off Control of Stirred-tank Heater
The use of on-off control offers significant economic advantages over proportional
control or other more sophisticated modes of control. The control mechanism is
simply a relay that turns on or off depending on the value of the measured variable.
The disadvantage is usually that the quality of control is inferior to that realized
with proportional control.

Consider the stirred-tank heater of Fig. 32.4. Water is being heated to a
controlled temperature by mixing with steam. It is assumed for the analysis that
the cold-water input rate is constant. Heated water overflows into an outlet pipe
at the top of the tank, so that no accumulation of mass occurs in the tank. Most
of the steam is added, at a fixed flow rate, from the main steam supply. However,
this amount of steam is set at a value somewhat less than the amount required
to heat the cold water to the desired temperature. An additional amount of steam
may be added whenever the solenoid valve is opened. When this additional steam
is admitted, the sum of the two steam inputs is enough to heat the water to
a temperature somewhat in excess of the desired temperature. A temperature-
measuring device such as a thermocouple or vapor-pressure bulb transmits the tank
temperature to the relay. When this temperature is below the set point, the relay
closes, which opens the solenoid valve, thus admitting more steam. Eventually,
the additional steam will result in the temperature exceeding the set point, the
relay will open, the valve will close cutting off the additional steam, and the
temperature will fall again.
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Main steam
SUPPlY I /Temperature sensing

= Voltage
- source

FIGURE 32-4
On-off control of stirred-tank heater.

It is apparent that an oscillating control will be achieved. In fact, from the
discussion in the previous section, we recognize that  a limit cycle will occur. We
consider now a numerical example of this type of control system.

Water at 40°F,  at a rate of 100 lb/min, is to be heated to 150’E  The main
steam supply is to be set so that it will heat this much water to 125oF,  while
additional steam, through  the controlled solenoid valve, is available to heat the
water another 50’F.  This means that the steady-state temperatures with the solenoid
closed and open, 125 to 17S’F,  are equally spaced about the set point. Heat losses
to the surroundings are negligible. The volume of the tank is 1.6 ft3.  The relay
control system has a vapor-pressure bulb for measurement of temperature. This
measuring system has a time constant of 30 sec. The solenoid valve is very rapid
in response.

We first analyze this system considering the relay to behave ideally. This
means that it opens precisely at the instant the temperature exceeds the set point
and closes similarly. Later, we shall correct this to conform more closely to the
behavior of actual relays.

If the tank is perfectly stirred, it is a first-order system with a time constant
of

7 _ PV _ W(1.6) = 1.0 min
0 loo

and its transfer function relating changes in the steam input rate to temperature is

where 10 (OF)  (min)/(lb)  is the change in steady-state temperature per unit change
in steady-state steam flow. The necessary fixed and controlled steam rates are
(using 1,000 BtuAb  for latent heat)
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Qfixed  =
(125  - 4OWO)  = 8 5 lb,min

1,ooO

Q controlled =
(175 - 125)UOO)  = 5 o lb,min

1,ooO

The amount of steam that would be necessary to maintain the water at a steady-
state temperature of 150’F  is

Q
s

= (150  - 4OWO)
1,ooO

= 11.0 lb/min

Hence, in terms of deviation variables, the controller output may be taken as *2.5
lb/min of steam.

A block diagram may now be constructed for this system, as shown in Fig.
32.5. This diagram uses deviations from 150°F as temperature variables, so the set
point is taken as zero. The action of the relay is symbolized by the input-output
relations, indicating that +2.5 lb/min of steam are admitted when the error is
positive and -2.5 lb/mm  when the error is negative, again in deviation variables.
The transduction from the vapor-pressure bulb to a temperature reading is included
implicitly in Fig. 32.5 in the comparator. The comparator is physically a device
that balances the pressure generated by the bulb against a mechanical tension
caused by positioning the set point. It need not be explicitly shown because its
dynamics are very fast.

It is convenient to use a dimensionless version of Fig. 32.5. This is provided
in Fig. 32.6, where the changes

have been made.

1
0.5 a+1 FIGURE 32-5

Block diagram for system of Fig. 32.4.
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FIGURE 32-6
Dimensionless block diagram
for system of Fig. 32.4.

The usual methods of linear control theory are not applicable to the block di-
agram of Fig. 32.6 The relay does not obey the principle of superposition in
its input-output relation. It is necessary to revert to the differential equations
describing the control loop. These are

(32.9)

c’ = ;!$I+* (32.10)-
E’ = -B” (32.11)

In addition we have

M’= -;
I

E’>O
E’<O

Combination of Eqs. (32.9) to (32.12) yields

1 d2c’ 3dr’ E’>O- -
2 dt2

+2-;i;-+e’=
E’CO

(32.13)

Equation (32.13) can be rewritten in phase notation as

de’

dt =&’

d6’

I

-(3&’  + 2c’ + 2) c’>O (32.14)

dt= -(38 + 2e’ - 2) Et<0

Equation (32.14) breaks up into two regions, the region  for which E ’ > 0 will be
referred to as R, and that far which e’ < 0 as L. The critical point for R occurs at

c’=  -1 g’ = 0

and that for L at

E’ =  1 6’ = 0

Note that each critical point is outside the region to which it pertains. In region
R, the isocline equation is

2 + 2t’ -I-  36’ =-, SRt?
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or

(32.15)

The corresponding isocline equation in L is

(32.16)

The isoclines in R, which is the right half of the e ‘e  ’ plane, radiate from the R
critical point (-  1,O)  and have slopes - ~/(SR  + 3). The isoclines in L radiate from
the critical point (1 ,O)  and have slopes -~/(SL + 3). These isoclines are indicated
in Fig. 32.7. Note that, in this figure, the E’ scale has been expanded by a factor
of. 10 to magnify the behavior near the origin.

A typical trajectory has been constructed, using the method of isoclines.
When the trajectory crosses from one region to the other on the k ’ axis, the
applicable isoclines also change. It can be seen from Fig. 32.7 that the trajectory
approaches the origin-, Since the trajectories must be vertical as they cross the E’
axis, the final state is a limit cycle of zero amplitude and infinite frequency about
the origin. In other words, the relay alternately opens and closes at very high
frequency, a condition known as chattering.

s-3 Solemimidve  1::  Solen$valve

s=-21

s=-11

t
-0.6

FIGURE 32-7
Phase-plane trajectory for on-off control of system of Fig. 32.4.
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Physically, this condition will never be realized because the dynamics of
the solenoid valve and the-relay itself would become important. Instead, the final
condition will be a limit cycle of high, rather than infinite, frequency and low,
rather than zero, amplitude.

However, the basic idealization which has led us to this suspect conclusion
is in the behavior of the relay. True relays have input-output characteristics more
similar to that shown in Fig. 32.8. There is a dead band around the set point,
of width 2~6,  over which the relay is insensitive to changes in the error signal.
Anyone who has made fine adjustments in the setting of a home thermostat has
observed this behavior.

Consider as an example the case for ~6 = 0.01. The effect of this dead
zone is to change the dividing line between R and L to that shown in Fig. 32.9.
The new dividing line has the equation:

E’ =
1

0.01 k’>O
-0.01 k’<O

Now, as shown in Fig. 32.9, all trajectories approach a limit cycle, for which the
error amplitude is approximately 0.03, The frequency is finite and is obtained by
computing the time around the limit cycle. Although we have not presented here
the graphical methods for determining this time, it can always be calculated by
noting from the first of Eqs. (32.14) that

(32.17)

Thus, time around the limit cycle can be computed by graphical evaluation of the
integral in Eq. (32.17). The only difficulty is near the E ’ axis, where i ’ goes to
zero. To circumvent this, we may use the second of Eqs. (32.14)

FIGURE 32-8
Characteristics of true relay with dead zone.
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FIGURE 32-9
Phase plane for system of Fig. 32.4 using relay with characteristics of Fig. 32.8.

over a small segment of the trajectory as it crosses the E ’ axis. The result of this
graphical calculation is o = 9.2 radknin.

The frequency thus computed for the error signal is, for obvious physical
reasons, the same as the frequency of the controlled signal, C ‘.  However, the
amplitude of C ‘, which is of more direct interest, is not the same as the amplitude
of E’.  It may be found in this case by noting from Eqs. (32.10) and (32.11) that

c’  = -ii’ - E’
2

It is therefore clear from Fig. 32.9 that C’ attains a maximum value near the
switching points where

C’ = kO.17

Reverting to the original variables, it follows that the water temperature will
oscillate with an amplitude of

(0.17)(25)  = 4.25OF

The effect of a small dead zone, 2~ = 2(.01)(25)  = OS’F,  is thus quite signifi-
cant.

In practice, the width of this dead zone is usually an adjustable design pa-
rameter. This width is always chosen as a compromise. The wider it is made, the
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lower will be the limit-cycle frequency, thus saving excessive switching or chatter.
However, the limit-cycle amplitude increases with dead-zone width, decreasing
the quality of control.

The Exothermic Chemical Reactor
We now wish to consider the phase-plane behavior of the chemical reactor of
Chap. 31. This study is based on the paper by Aris and Amundson (1958). For
convenience, the dynamic equations are reproduced here:

dX/t-=
dt

;(X& - XA)  - ke-EtRT;A

dT- = $To  - T) + k(AH)e -E’RT Q(T)
dt

c (31.17)
P xA  - PVC,

Defining the dimensionless variables

F t - CPTO7=-
V

y=XA *= CpT eo =
XAo x&W Q,@H>

these equations become

dy- = 1 - y - r(y,  (3)
dr

- = e. - 8 + r(y, e) - q(e)
dr

(32.19)

kb [-ECP/Rx,+JAH)t’]where r(y,  0) = ye

0) = Q(T)
FPQ,&W

As a control heat-removal function q(O),  Aris and Amundson chose the form

0) = we  - em + K,(e - edi (32.20)

where 8, is the dimensionless mean temperature of water in the cooling coil. This
indicates that the heat removal is always proportional to the difference between
the reactor temperature and mean cooling-water temperature. In addition, the term
in brackets indicates that proportional control on the cooling-water flow rate is
present. The flow rate is increased by an amount proportional to the difference
between the actual reactor temperature 8 and the desired steady-state tempera-
ture 8,. This increase in cooling-water flow rate is assumed for convenience to
cause an approximately proportional increase in heat removal. The constant U is
a dimensionless analog of Us A, the overall heat-transfer rate.
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. As a specific numerical example, Ark  and Amundson selected the following
values for constants:

kV 25-=e
F

EC,
R+,,(AW

= 50

8, =  2
80  = 8, = 1.75

U=l

Under these conditions, Eqs. (32.19) become

dr- = 1 - y  _  ye5w2-l/e)
dr

(32.21)
d9
- = 1.75 - e + ye50(‘n-1’e)  - (e - 1.75)[1  + K&J - 2)]
d7

It can be seen that there is a critical point of Eqs. (32.21) at
y=4=Ys

e=2=e,

and this is the location at which control is desired. This point has the correct
steady-state temperature and a 50 percent conversion of reactant. In addition,
there may be two more critical points of Eq.  (32.21) depending on the proportional
control constant K,, as will be discussed below.

Since we are primarily interested in control about 8,) we make use of Li-
apunov’s theorem on local stability, presented earlier. Linearizing Eq. (32.21) in
deviation variables 8 - 8, and y - ys by using Taylor’s series yields

d(y  - ys)
dr

= -2(y  - ys)  - 6.25(8  - es)

w - 0,)
d7

(32.22)

where ys = i. As we have seen before, the solution to this linear system is

y - y, = cleslt  + c2eszt
8 - 8, = c3es1’  + cqeszt

where, in this case, sr  and s2  are the roots of [see Eq. (31.6) and the steps
following this equation]

K, - 9g+-  -=
4

s +  2Kc  - 9
4

o (32.23)

According to the Routh criteria, all coefficients in this characteristic equation must
be positive in order that the real parts of the roots sr  and s:! be negative. Hence,
we can see immediately from Eq. (32.23) that, in order to achieve a stable node
or focus, it is necessary that K, > 9.
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However, Aris and Amundson obtained the phase plane for (among other
values) a value of K, slightly greater th& 9. This was accomplished by numerical
solution of Eqs.  (32.21). It was found that, in the vicinity of the steady-state point,
the situation is as depicted in Fig. 32.10. There are two limit cycles surrounding
the stable focus critical point. The inner limit cycle is unstable, and the outer
limit cycle is stable, according to the definitions given earlier. It may be seen that
any disturbance (or initial condition) which moves the system no further from
the critical point than the unstable limit cycle can be controlled. That is, the
control system will eventually bring the system back to steady state. However,
once the system is forced outside this limit cycle, it will eventually spiral out
to the stable limit cycle. Control cannot be restored, and the reactor temperature
and concentration oscillate continuously. This example illustrates very well the
limitations of linear control theory. All that the linear investigation could reveal is
that, for K, > 9, the system will be stable in some vicinity of the control point.
The phase-plane analysis shows that, for K, slightly greater than 9, this vicinity
is inside the unstable limit cycle of Fig. 32.10. If K, is increased further, the two
limit cycles disappear and good control can be achieved. This example points out
the importance of unstable limit cycles. Although a physical system can never
follow an unstable limit cycle, the limit cycle divides the phase plane into distinct
dynamic regions for the physical system.

Other values of K, were analyzed by Aris and Amundson. For low values
of K,, there am  two other critical points besides the control point. For example,
for K, = 0.8, there are critical points at

y = 0.95 8 = 1.77
and

y = 0.15 8 = 2.15

Linear analysis shows that both these are stable, but for K, < 9, the control point
(y = 0.5, 8 = 2) is not. Phase-plane analysis shows that, if the reactor is started
at high temperatures, it will come to steady state at the high-temperature critical
point and vice versa. Starting the reactor at the desired control point will be of no

FIGURE 32-10
Stable and unstable limit cycles in exothetmic  chem-
ical reactor.
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2.25
9

FIGURE 32-11
Phase-plane portrait of the con-
trol of a chemical reactor (limit
cycle forms).

avail, as it will leave and go to one of the other steady-state points, depending on
the direction of the initial disturbance. For high values of K,, there is only one
critical point, which is at the control point. Phase-plane analysis shows that Kc
must exceed approximately 30 before rapid return to steady state at the desired
control point, following all disturbances, is achieved. Some phase-plane portraits
for this system that were obtained by means of a computer are shown in Figs.
32.11 to 32.13.

FIGURE 32-12
Phase-plane portrait of the con-
trol of a chemical reactor (no
limit cycle forms).
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FIGURE 32-13
Phase-plane of the control of a
chemical reactor (no limit cycle
forms).

This discussion is only a rather brief introduction to the extensive work by
Aris and Amundson. The reader is strongly urged to consult the original paper
for a more comprehensive treatment of the problem.

SUMMARY
We have seen that phase-plane analysis can be used for two typical nonlinear
control problems. The results of this analysis give extensive information about the
control system behavior. The responses to various disturbances can be visualized
by sketching only a few trajectories.

On the other hand, the method is effectively limited to second-order systems.
Furthermore, analysis is considerably more laborious than the linear analysis, and
a decision regarding the value of the additional information must be made.

PROBLEMS
32.1. For the system shown in Fig. P32.1, obtain equations for plotting the isoclines in

the e versus 2 phase plane. Plot a few isoclines and sketch carefully the trajectory
from the initial point e = 2 and t = 0.

M 1
ts+iy

,C

FIGURE P32-1
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l

M K

2%2+2~rs+l
*c

FIGURE P32-2

32.2. For the system shown in Fig. P32.2, plot isoclines for S = 0, 1, -3, and TV on the
phase plane having coordinates e,t.  Use r = 1, 5  = 112, K = 1, b = 0.25. Let
R = 0. Sketch the trajectory starting at e = 1, k  = 0.

32.3. Consider the phase-plane equations

il = x2

ii2 = -xl  + &x2 - xf - yx;

(a) Determine the type of critical point at x t = - 1, ~2  = 0.
(b) If there ate any other critical points, find them.

32.4. The system shown  in Fig. P32.4 is to be controlled by an i&al on-off relay.
(a) From the block diagram, write the differential equations for phase-plane de-

scription of the physical system in the form:

il = ftn(xl,x2)

i2  = ftn(nt,nz)

where xt = c and xq = t.
(b) Plot on the phase plane (x l,x2)  a few isoclines. Include isoclines for S = 0,

1, CQ.  Show clearly the switching line where the forcing changes from one sign
to the other.

(c)  Make a rough sketch of the trajectory that starts at x t = 2, x2 = 0 and extend
it only to the switching line.

(d)  Calculate accurately the values of x 1 and x 2  for the trajectory of part (c) for
t = 0, 0.5, 1, 1.5, and 2.

(e) Determine the values of x 1 and x2 where the first switch occurs.

R=oy-j++-t+jT+c

FIGUREP32-4

32.5. Calculate the period of the limit cycle in Fig. 32.9.



CHAPTER

33
THEDESCRIBING
FUNCTION
TECHNIQUE

In Chap. 32, an on-off temperature-control system was studied in the phase plane.
This work led to information about the limit cycle of the system as well as about
the manner in which trajectories approached the limit cycle. Very often, this
latter information about the transient approach to the limit cycle is unnecessary.
Of primary interest to the designer are the amplitude and frequency of the limit
cycle. The describing function method facilitates rapid, accurate estimates of these
quantities without construction of the phase plane.

In this chapter we shall study application of the describing function method
to the analysis of the on-off controller for the temperature bath of Chap. 32. The
treatment will be introductory only and largely confined to a single example. The
purpose is to indicate the existence of the method and to show how it complements
the phase-plane technique. The reader desirous of a more extensive treatment is
referred to the text by Graham and McRuer  (1961).

HARMONIC ANALYSIS
Consider the block diagram for the on-off control of the stirred-tank heater of
Chap. 32, shown in dimensionless form in Fig. 33.1. In the following analysis,
we omit the primes from the variables of Fig. 33.1. Our objective is to find
the amplitude and frequency of the limit cycle that occurs in the control loop.
The describing function method assumes that the error signal, in the limit cycle
condition, is sinusoidal:

E = Asinot (33.1)

506
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FIGURE 33-1

using re1,  with dead zone.
Block diagram  for control of stirred-tank heater

A glance at Fig. 32.9 shows that the error signal is not actually sinusoidal, since a
sinusoidal signal appears as an ellipse in the phase plane. However, the difference
between the actual limit cycle and an ellipse is not great, particularly if only the
amplitude and frequency are of interest.

If the error signal is sinusoidal, the relay output M can be derived from Fig.
33.2, where it can be seen from the input-output relations that M(t) is a square
wave that lags e(t) by a time (l/o)sin-‘(Q/A).  The time lag is due to the dead
zone in the relay. Thus,

-1 ErJ  271.
_ A,o I (33.2)

where

i

1 0 < t < PI2
S(t,P) = -1 PI2  < t < P

S(t  + P,P) all t

is the undelayed unit square wave of period P shown in Fig. 33.3.

(33.3)

k=A sin at = - co \

FIGURE 33-2
Result of application of sinusoidal error signal to relay with dead zone.
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ItWkP)

1 1

-P/2 P/Z
0 -

t

-1 FIGURE 33-3
I The unit square wave S(t, P).

As is well known from Fourier series analysis, (see Churchill and Brown,
1986),  S(t, 27rl0.1)  may be expanded in a series of sine waves to give

S t 2 = 4
(h)  ,(

sinot  + !jsin3wt + +.sin5wr  =t-  e-e) (33.4)

Hence, by Eq. (33.2)

M(t) = 4 sin wt - sin-’  e”
7T I (

A) +;sin(3wt  - 3sin-‘;)
(33.5)

+lsin  5wt  -5sin-‘2 + **a5 ( A ) 1

According to Eq. (33.5),  M(t) contains a fundamental and odd harmonics.
Let us consider what happens to these components of M as they pass around the
control loop. Assuming that o is sufficiently large, the harmonics are much more
heavily attenuated by the two first-order elements than is the fundamental, because
the harmonic frequencies are higher. For example, if w is 9 t-ad/mm,  the relative
attenuation of the fundamental and third harmonic between M and B is expressed
by the quotient

Since the initial amplitude of the third harmonic in M(t) is one-third of the
fundamental, it is clear that the amplitude of the third harmonic will be less than
4 percent of the amplitude of the fundamental in B(t). The amplitudes of the
higher harmonics will be even less. To all intents and purposes, B(t) is sinusoidal
and, hence, so is e(t). Furthermore, the presence of harmonics in M(t) may be
ignored, and the approximation
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* M(t) = $ sin (wc - sin-’ 2 1 (33.6)

is acceptable because the higher harmonics are filtered out by the rest of the loop.
In order for a limit cycle to be maintained, it is necessary that

B(t) = -e(t) = -Asinot (33.7)

However, if M(t) is given by Eq. (33.6),  B(t) can be calculated by frequency
response. The AR between M and B is

and the phase difference between B and M is

&B  - 4M  = - tan-‘w - tan-’ : (33.9)

According to Eq. (33.7),  the overall amplitude ratio between B and E must be
unity and the overall. phase lag 180’. Also, according to Eq. (33.6),  the AR
between E and M is 4/7rA  and the phase lag is sin-‘(O.Ol/A).  Combining these
facts results in

4 1
~J1+7;;-jzJiTqzp=

1

-sin-‘? 0_ tan-lw  - tan-12  = -180’
(33.10)

Equations (33.10) are a system of two equations in the unknowns A and o . Trial-
and-error solution yields

A = 0.03
w = 9 rad/min

in excellent agreement with the results of the phase-plane method presented in
Chap. 32. The reason for the accuracy of these results is the high attenuation of
harmonics provided by the linear elements in the loop. The labor saving of this
method over the phase-plane method is apparent.

Of more direct interest is the amplitude of the signal C in the limit cycle.
This may now be estimated by frequency response to be

ICI= J + ($0.03) = 0.14

The true result derived by the phase-plane method is 0.17, so that an error of
18 percent is attributed to the neglect of harmonics in C. The reason for the de-
creased accuracy in the amplitude of C over that in the amplitude of E is that
only one of the linear elements has acted on the squarewave output of the relay
before it reaches C. Hence, the harmonics are not fully attenuated in C and the
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signal C will be less sinusoidal than E. However, for engineering purposes the
error in C is probably not excessive. .

THE DESCRIBING FUNCTION
Because the basic technique of harmonic analysis often yields accurate results
with modest effort, it is profitable to systematize the procedure. To do this, a
describing function is defined for the nonlinear loop element. This function as-
sumes a sinusoidal input to the nonlinearity and gives the AR and phase lag of
the fundamental in the output. Thus, for the relay considered in the last section,
the describing function is defined by

where N is used as the symbol for the describing function.
In general, the loop diagram for a relay control system appears as in Fig.

33.4. As shown previously, the necessary condition for a limit cycle, ignoring
harmonics, is

i$N  +  i$G,H  =  -180’
(33.11)

As in the case of the relay, the magnitude and angle of N in general depend on
the amplitude A of the input to N. The magnitude and angle of G# depend on
o. Equations (33.11) can be rewritten

(33.12)
&G,H(o)  = -180’  - &N(A)

Equations (33.12) can be solved graphically on a gain-phase plot. This is a plot
of the log of AR versus phase, as shown in Fig. 33.5 for the case treated in
the previous section. The linear elements are plotted as IG#l  versus &GpH,
with o plotted as a parameter on the curve. The relay  is plotted as l/l N(A) I
versus -180’  - &N(A), with A plotted as a parameter on the curve. Accord-
ing to Eqs. (33.12),  a limit cycle occurs at the intersection of the two curves,
where the amplitude and frequency can be read from the parametric labeling of
A and o.

+!z?gTHGm33-4
Typical control loop containing nonlinear element.
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.
I I

I 1’
I I

-180 -1
Phase

‘I

I

FIGURE 33.5
Gain-phase plot for system of Fig. 33.1.

The advantages of the gain-phase plot are (1) elimination of trial-and-error
solution of equations such as Eqs. (33.10) and (2) ease of treatment of complex
linear systems G,H. In addition, the gain-phase plot can be used to estimate
the occurrence or nonoccurrence of a limit cycle, according to whether or not an
intersection occurs.

SUMMARY

The describing function can be used to good advantage for estimation of amplitude
and frequency of limit cycles in systems similar to the one studied here. The
success of the method depends on the presence of a sufficient number of linear
elements in the loop to filter out the harmonics generated by the nonlinear element.
No information about the transient response is obtained. However, the method
requires considerably less labor than does the phase-plane method, and the limit
cycle amplitude and frequency are often the quantities of primary interest.

It should also be noted that the describing function method is not limited to
second-order systems, as is the phase-plane method. In fact, the higher the order
of G,,H  in Fig. 33.4, the more accurate will be the describing function results.



512 NONLINEAR CONTROL

PROBLEMS n

33.1. For the control system shown in Fig. P33.1  determine the frequency and amplitude
of the limit cycle if one exists. Use the describing function method.

FIGURE P33-1

33.2. (a) For the system shown in Fig. P33.2, r = I,5 = 1/2, K = 1, M = 1, b =
0.25 and R = 0.

(b) Show that the describing function is

where A is the amplitude of the sine wave entering the nonlinearity.
(c) For K = 2, does a limit cycle exist? If so, describe it.
(d)  If a transport lag ems is introduced in the feedback loop, determine if a limit

cycle exists for K = 2.

m K

2w + 2(?S  + 1
,C

,

FIGURE P33-2

33.3. The stirred-tank system shown in Fig. P33.3 produces an aqueous solution of salt by
use of a solenoid valve that switches from one reagent tank to the other as described
below. The reagent tanks contain concentrated solutions of salt. When the measured
concentration is above the set point, the control reagent of lower concentration
enters the mixing tank at a constant flow rate of 0.01 liter/mitt. When the measured
concentration is less than the set point, the control reagent of higher concentration
enters the mixing tank at a constant rate of 0.01 liter/min.  The hold-up volume of
the tank is 2 liters, the transport lag between the tank and measuring element is 1.2
min, and the set point is 2 g salt/liter.
(a) Obtain a block diagram, in terms of deviation variables, for this control system.
(b) By means of the describing function method, determine the characteristics of

the limit cycle (frequency and amplitude), if one exists.
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/-
Contro l  reagent

\J
Contro l  reagent

- et _ wz- - - -- - - - - -- - - -
- - - -

100  sa l t /g 300 g salt/
l i t e r l i t e r

FIGURE P33-3FIGURE P33-3

33.4. For the control system shown in Fig. P33.4, determine if a limit cycle exists for
K = 1, 2, and 3. If a limit cycle exists, describe it in terms of amplitude and
frequency. For the nonlinearity shown,

N = I[ sin-‘(i)+ i,/G] ,$OforAZ  1

N = 1 forA<  1

A is the amplitude of the sine wave entering the nonlinearity

FIGURE P33-4

I--
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CHAPTER

34
DIGITAL

COMPUTER
SIMULATION
OFCONTROL

SYSTEMS

The purpose of this chapter is to describe some of the methods for obtaining the
transient response of a control system from a set of differential equations or transfer
functions. Inversion of a high-order transfer function can be a time-consuming
task. If a control system includes a nonlinearity or a transport lag, obtaining the
response as an analytical expression is often impossible. The appearance of analog
computers and digital computers after World War II made the task of solving the
dynamic response of control systems much easier.

During the period from the  mid-fifties to the mid-seventies, the analog com-
puter was widely used to obtain the response of control systems. During that time,
digital computing was very costly and slow compared to the situation today. There
was little software available; at the beginning, one had to program the solution to
a problem using machine code. The basic elements of the analog computer con-
sisted of integrators, summers, gain potentiometers, and some nonlinear devices,
such as multipliers. By connecting these  computing elements together with wires,
one could obtain the transient response to a rather large-scale control problem in
the form of a voltage that varied with time.

As the cost of digital computing decreased and its speed of operation in-
creased, the analog computer was gradually replaced with the digital computer.
This change was especially noticed with the  availability of the personal computer.

5 1 7
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One advantage of the analog computer was that the flow of voltage signals through
the computing elements closely resembled the flow of signals in the block diagram
of the control system; the analog computer diagram and the block diagram of the
control system looked nearly the same. In fact, this advantage has been retained
in some of the digital computer simulation software that has been developed to
solve control problems.

The basic operation needed to solve control problems by either an analog
computer or a digital computer is integration. The integration device, in the case of
an analog computer or the simulation software in the case of a digital computer, is
called an integrator. Some of the symbols used to represent integration are shown
in Fig. 34.1. The operation performed by the integrator is

y=  r
i

x dt + y(O) (34.1)
0

where y(O)  is the initial value of i at t = 0.
The symbol shown in Fig. 34. la is used in analog computing where sign

inversion occurs. The symbol shown in Fig. 34.16 is used in block diagrams
for state-space problems. The symbol in Fig. 34.1~  is used in digital computer
simulation software. Since the focus of this chapter is on the digital computer,
the method of achieving integration by means of an analog computer will not be
considered further. The reader may consult Coughanowr and Koppel (1965) or
other sources for this topic.

In the branch of mathematics called numerical analysis, many routines or
algorithms to perform integration have been developed. Perhaps the simplest
method, which is often discussed in a course in calculus or differential equa-
tions, is the Euler method. The Euler method is easy to understand, but it has a
large truncation error that makes it too inaccurate for general use. Many methods
of numerical integration have been devised that are far more accurate than the
Euler method; one of these is the Runge-Kutta method. In this chapter, only the
fourth-order Runge-Kutta method will be used. This method is often used to solve
sets of first-order differential equations.

Runge-Kutta Integration
The Runge-Kutta method for solving a differential equation is often called a
“marching” solution because the calculation starts at an initial value of the inde-
pendent variable t and moves forward one integration step at a time.

(a)
FIGURE 34-1

(6) Cc)

Symbols used to represent integrators.
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Consider the first-order differential equation

dydt = f(Y9 t> (34.2)

for which y = yo  at t = to. In control problems, the initial time to  is usually
taken as zero. When the dependent variable y is defined in terms of a deviation
variable, which is usually the case in control problems, the value of y at to is also
zero. The Runge-Kutta method divides the independent variable t into increments
of equal length At as shown in Fig. 34.2.

The fourth-order Runge-Kutta method uses the following equations:

kl =  f  (yo>  to)At (34.3)

k2  = f (yo + k1/2,  to + At/2)At (34.4)

k3  = f (yo + k2/2,  to + Atl2)At (34.5)
kq  = f (y. + k3,  to + At)At (34.6)

yl = yo  + (kl + 2k2  + 2k3  + k4)/6 (34.7)
_ tl  = to  +At (34.8)

The equations just listed are applied during the first increment At from to
to t 1.  The values obtained at the end of the first increment (y 1, t 1) are then used
as a new set of initial conditions in these equations to obtain a set of values of y
and t at the end of the second interval. This procedure of computing y and t at
the end of successive intervals generates the solution to the differential equation.

The set of equations [Eqs.  (34.3) to (34.8)]  used to solve a single first-
order differential equation can be applied to each dependent variable in a set of
differential equations. Consider the pair of differential equations

with the initial conditions yo, wo,  to.
The Runge-Kutta equations used to solve for y(t) and w(t)  are given below.

kl = fl(yot  wo,  to)At (34.11)

II = fdyo,  wo,  to)At (34.12)

At At At At
--tf-

h 0
0 0

0 0
FIGURE34-2

to I1 t2 t3 t Dividing the independent variable t into equal increments At.
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k2  = fl(yo  + k1/2,  wo  + 1112,  to  + Atl2)At
E:! = fz(yo + k,l2,  wo  + 11/2,  to + Atl2)At
k3  = fl(yo  + k2/2,  wo  + 12/2,  to + At/2)At
13 = fz(yo  + k212,  wo  + 1212,  to + Atl2)At
h = fl(yo  + k3,  wo + 13,  to + At)At
14 = fi(yo  + k3,  wo  + 13, to + At)At
yl = yo  + (1/6)(kI  + 2k2  + 2k3  + k4)
WI = wo  + (1/6)(Z1 + 212  + 2Z3  + 14)
tl = to + At

(34.13)
(34.14)
(34.15)
(34.16)
(34.17)
(34.18)
(34.19)
(34.20)
(34.21)

Example 34.1. Simulation of a second-order system. The differential equation
describing the dynamics of a second-order system, which was given in Chapter 8,
is as follows:

2

72%  +  YT$  +  y  =  x ( t ) (34.22)

Develop a computer program to solve this problem by use. of the Runge-Kutta
method, for the following conditions: r = 1,s  = 0.4, n(t) = u(t) = 1, y(O)  = 0.

We must first express Eq. (34.22) as two first-order differential equations by
letting

Yl =Y (34.23)
and

+I dy
Y 2  =  dt  =  x

Using these expressions in Eq. (34.22),  we obtain

dn
dt  =  Y 2

42 1
x = -GYt - 7YY2 + $0)

(34.24)

(34.26)

The reader who has studied Chapter 28 will notice that Eqs. (34.25) and (34.26)
have been written in terms of the state variables, yl  and ~2.  We are now ready to
apply the Runge-Kutta method to these equations.

A computer program written in BASIC is shown in Fig. 34.3. In the program,
the functions DYI and DY2 are defined on lines 20 and 30 and correspond to Eqs.
(34.25) and (34.26). After defining the parameters (7,  l, and At), the Runge-Kutta
procedure is started on line 170.

The results from running the program in Fig. 34.3 are shown in Table 34.1.
The reader can check these results with the analytical equation given in Chapter 8
[Eq.(8.17)}.

Example 34.2. Simulation of a PI control system. In this example, the transient
response of the liquid-level control system shown in Fig. 34.4~ is to be obtained
using a digital computer. The block diagram of this system is shown in Fig. 34.4b.
The values of the parameters of the block diagram are as follows.
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LIST
ItO REM RESPONSE OF SECOUD  ORDER SYSTEH  BY RUNGE-KUTTA
20 DEF FNDYL(YL,Y2)  = Y2
30 DEF FHDYR(YL,YR)  = L/TAU^R  - YL/TAU*Z!  - i!*ZETA*Y2/TAU
'IO ZETA = .'I
SD TAU = It
bO DT = .I35
70 YP = cl
80 Y2 = cl
9UT=O
100  PRINT "T","Y"
LLO  K = 0
II20  K = K+L
I130  IF K = LL,THEN  It50
LYU  GOT0 170
15.0  PRIRT USIRG  "##.#### ";T,YL
Lb0  K = L
lo70  KL = PNDYL(Ylt,Y2)*DT
I180  LL = FNDYB(YL,YR)*DT
I,90  K2  = FRDYL(Ylt+.5*KL,Y2+.5*Ll,)*DT
200  L2 = FRDY~(YIJ+.~*KL,Y~+.~+LL)+DT
2LCl  K3  = FNDYL(YL+.S*Ki?,Y2+.5*LR)*DT
220 L3 = FRDY2(YL+.5*K2,Y2+.5*L3)*DT
230 K9 = FNDYIv(YL+K~,Y~+L~)*DT
2Vll L4 = FKDY2(YL+K3,Y2+L3)*D!C
2 5 0  YL =  YL +  (KL+Z*K2+2*K3+Ktl)/b
260  Y2 = Y2 + (LL+R*LR+R*L3+L'd)/b
270 T = T + DT
280  IF T>la0.05  THER  END
290  GOT0 120
300 EBD
310 RUN
O k

FIGURE 34-3
BASIC program for step response of second-order system of Example 34. I (T  = 1.5 = 0.4).

K, = proportional gain, psi/ft  tank level

71 = integral time, min

K, = valve constant = 0.070 (ft3/min)lpsi

Rt = 0.55 (ft level)/(ft3/min)

71 = time constant of tank t = 2.0 min

72 = time constant of tank 2 = 1.0 min

q  = time constant of tank 3 = 1.0 min

For convenience in simulating this system, the diagram of Fig. 34.4b has been
reduced to that of Fig. 34.5 in which K, has been combined with the PI control
transfer function in one block and the transfer functions for the three tanks have
been combined in one block.
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TABLE 34.1
Step response of second-order system of Example 34.1

RUN
T

0.5000
1.0000
Il.5000
2.0000
2.5000
3.0000
3.5000
4.0000
Y.5000
5.0000
5.5000
6.0000
b.5000
7.0000
7.5000
8.0000
8.5000
9.0000
9.5000

ll0.0000
Ok

Y
0.1077
0.3599
0.6582
0.7273
ll.L22L
ll.228L
II.2532
Il.2189
L.ll5L7
L.07bl
L.0ll00
0.9637
o.=lr100
0.93b2
0.9Yb5
0.9bV3
0.9833
0.7995
ll.olloII
L.0157

To obtain the differential equations for use in the Runge-Kutta method, we
proceed as follows. From the controller block, we may write

(71s  + 1)=K,K,-----
71s

(34.27)

Cross-multiplying gives

qsM(s) = K,K,rIsE(s)  + K,K,E(s)

This may be converted to the time domain to give

riz  = KcK,i + [K,K,Irl]e (34.28)

From the comparator of Fig. 34.5, we have

e=l-c (34.29)

and

& = -k (34.30)

Replacing e and 1  in Eq. (34.28) by the expressions in Eqs. (34.29) and (34.30)
gives

i = -K,K,t+ Y(l - c) (34.31)
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FIGURE 3 4 - 4
Process for Example 34.2: (a) liquid-level control system, (b) block diagram.

The three tanks are represented by

C(s) 0.55

M(s)- = (2s + l)(S + 1)2
(34.32)

The differential equation represented by Eq. (34.32) can be formed by cross-
multiplying. The result is

(2s + l)(S + l)?(s)  = 0.55M(s)
or

(2s3  + 5s2  + 4s + l)C(s)  = 0.55M(s) (34.33)

Recognizing PC(s) to be the nth derivative of c in the time domain, Q. (34.33)
can be written as

2 ? + 5 % + 4; + c = 0.55m
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FIGURE 34-5
Reduced diagram of control system for Example 34.2.

or

‘i:  = -0.52  - 2t - 2.5?  + 0.275m (34.34)

In order to apply the Rung+Kutta  method, we must express Eq. (34.34) as three
first-order differential equations. The procedure will now be shown.
Let

x = c (34.35)

y=i’ (34.36)
z=% (34.37)

Equation (34.34) can now be written

i=y (34.38)

g=z (34.39)

i = -0.5~  - 2y  - 2.5~  + 0.275m (34.40)

We can now summarize the set of first-order differential equations with initial con-
ditions by listing Eqs. (34.38),  (34.39),  (34.40),  and (34.31). In Eq. (34.31),  c and
? have been replaced by x and y according to Eqs. (34.35) and (34.36).

Summary of differential equations

i=y

j=,

i = -0.5~  - 2y  - 2.5~  + 0.275m

riz  = K,K,y  + (K,K&)(l  - x)

(34.38)

(34.39)

(34.40)

(34.41)

Initial  conditions

x(O)  = 0

Y(O) = 0

z(O)  = 0

m(O) = K,K,

Notice that the control problem has been converted to a state-variable representation
in which the state variables am  x, y,  z, and m. The initial conditions for the state
variables x, y,  and z are all zero, in keeping with the fact that these variables represent
deviation variables that are, by definition, zero initially. In this formulation x, y,  and
z represent level, derivative of level, and second derivative of level, respectively.



A comment is needed to explain the fact that the initial value of m is K&v.
At time zero, the system is disturbed by a unit-step change in set point. This signal
is transmitted through the controller block and causes m to jump to KcKV  because
of the proportional action present in the controller.

The Runge-Kutta method will now be applied to solving Eqs. (34.38) to
(34.41). The Runge-Kutta equations given by Eqs. (34.11) through (34.21) must,
of course, be extended to handle the four differential equations. A BASIC computer
pmgram  for this problem is shown in Fig. 34.6. The output from running the program
is given in Table 34.2.

Example 34.3. Simulation of a control system with transport lag. Consider the
proportional control system in Fig. 34.7 in which a transport lag is located in the
feedback path. The equations representing this system are as follows:

jl = -gy  + +

m = K,e

e=r-x

x = y(t  -T-d)

The difference between this problem and the previous ones considered in this
chapter is the presence of a transport lag. In the previous digital simulations, only
the current value of y was needed and hence stored. In this problem, we must store
values of y over the time interval t - 7d to t (i.e., over the interval rd). Since we

TABLE 34.2
Response of level for Example 34.2

TIHE,HII
0 . 5 0 0
L.000
1.500
2 . 0 0 0
2 . 5 0 0
3.000
3 . 5 0 0
11.000
Y.SiJcl
5 . 0 0 0
5.500
b.OClO
6.500
7.000
7.500
iS.000
h.500
9.000
9.500

L0.000
O k

LEVEL,PT
0 . 0 3 3
lJ.ll99
0.5OY
u.wli
L.24b
L.!ilJ5
1.608
l.flr3
ll.3~2
l.Ob7
D.?Vr,
0.57L
0.503
o.sr13
Ct.690
0.899
ll.zl43
L.279
ll.359
ll.3g2
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5 REH  CONTROL OF TRREE-TANK SYSTEH;  USE OF RUNGE-KUTTA;EX. 2
10 DEF FNH(M,X,Y,Z)  = -KV*KC*Y + KC*KV*(L-X)/TAUI
20 DEF FNX(H,X,Y,Z)  = Y
30 DEF FNY(H,X,Y,Z) = Z
90 DEF FNZ(H,X,Y,Z)  = -2.5*2  -2*Y  -.5*X  + .275+H
bll KV  = -07
70 KC = LO7.2
80 TAUI = 3.7
90 H = KC*KV
LOO  x = 0
IJIIO  Y = 0
II20  z = 0
I,30  T = 0
L40  DT = .I
141  PRINT "TIKE,HIN","LEVEL,FT"
I,'#2  K = 0
144  K = K+L
1115  IF K=b TEEN 2117
L4b  GOT0 I50
1117  PRINT USING "##.### ";T,X
I,'+8  K=L
150  HL = FNH(H,X,Y,Z)*DT
Lb0  XL = FNX(M,X,Y,Z)*DT
I170  YL = FNY(M,X,Y,Z)*DT
LB0  ZL = FNZ(H,X,Y,Z)*DT
190  BP = FNM(H+HL*.5,X+XL*.5,Y+PLc.S,Z+ZLr.S)*DT
200 X2 = FNX(H+HL*.S,X+XL*.S,P+PL+.S,Z+ZLr.S)*DT
2LO  Y2 = FNY(M+ML*.5,X+XL*.5,P+YLI.S,Z+ZLI.S)rDT
220 22 = FNZ(H+HL+.S,X+XL*.S,P+PL+.S,Z+ZL+.S)IDT
230 83 = FNH(1+12*.5,X+X2*.5,Y+YP*.5)*DT
R&O  X3 = FNX(H+MR*.5,X+X2*.5,Y+YP*.5,Z+Z2r.S)rDT
250 Y3 = FNY(H+H2*.5,X+X2*.5,Y+Y,?*.5,Z+ZP*.5)*DT
2bO  23 = FNZ(H+H2+.5,X+X2*.5,Y+YP*.5)iDT
270 HIII  = FN~I~(K+M~,X+X~,Y+Y~,Z+Z~)*DT
280 X'd = FNX(H+M3,X+X3,Y+Y3,Z+Z3)*DT
290  Ylr = FNY(H+H3,X+X3,Y+Y3,Z+Z3)*DT
300 Zlr = FNZ(H+H3,X+X3,Y+Y3,Z+Z3)*DT
310  II = H+(Z/b)+(H1+82*2+M3*~+Hq)
320 X = X+(l/b)*(Xl+XP*P+X3*P+XQ)
330 Y = Y+(L/b)*(YL+YP*P+Y3*P+Y~)
340 Z = Z+(L/b)*(ZZ+Z2*2+Z3*P+Ztt)
350 T = T+DT
370 IF T>LO.L  THEN END
380 GOT0 L'+lr
390  END

FIGURE34-6
BASIC computer program for liquid-level control system for Example 34.2 for a step change in set
point of 1.0 ft and K, = 107 psi/ft  and ~1  = 3.7 min.
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compute y only at discrete times, we must store values of y in an array of computer
storage locations, called a stack. The diagram in Fig. 34.8 will help clarify this
storage.

The array will be used to store past values of y that were computed at the end
of each computation interval. At the end of each computation interval the values of
y will be moved one position toward the end of the stack and the value of y just
computed will be placed in the first storage location of the stack. By this means, a
current value of y will not appear at the end of the stack until it has moved through
each storage location. The amount of time the current value of y is delayed will
depend on the number of storage locations and At. The number of storage locations
N is determined-by:,

N  =  7JA.t

Let  the values stored in the array be S(i) where i, which represents the array position,
will vary from 1 to N + 1. The following terms are now defined for the computer
program to be developed.

Y = y, present value of y

S(i) = stored past values of y
S(l)  = current value of y, obtained at end of most recent

computation interval
S(N + 1) = X, the delayed value of y, i.e., X = y(t  - s-d)

P r e s e n t  v a l u e  o f  Y

FIGURE 34-8

I *Delayed value of Y (i.e., X)
Array used to obtain transport
lag in Example 34.3.
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An outline of the procedure for computing y at discrete values of t is as follows.

1. Let the array for storing values of y be of “length” N + 1
where N = TdlAt.

2. Initialize the elements of the array to zero.
3. Initialize the time variable, T = 0.

4. Set X = S(N + 1).
5. Print T, Y, and X.

6. Start the Runge-Kutta routine to integrate the differential equation over the  first
computation interval AT.

7. Rearrange the contents of the array as shown in Fig. 34.8 by shifting the contents
of each storage location by one position. Start shifting from the bottom. In this
shifting, the oldest value of Y will be discarded and the value of Y just computed
will enter the first cell to become S( 1).

8. Store the value of Y just computed into S(I), i.e., S(l)  = Y.

9. Increment T by AT and return to step (4) to repeat another cycle of calculation.

Using the steps just listed, the BASIC computer program shown in Fig. 34.9
was written for the conditions: r = 1.0, rd = 0.2, R = u(t), K,  = 8.4, and
At = 0.02. For these conditions,

N = Qhit  = 0.210.02  = 10
The output from the computer program is shown in Table 34.3.

The computer program for simulating a transport lag that  has just been
presented is quite primitive compared to those provided in commercial software
in which the delayed function is not held constant during the time step At, but
is allowed to vary by use of an interpolation scheme. Some of the simulation
software packages that provide the simulation of transport lag (e.g., TUTSIM,
ACSL, and CC) are listed at the end of this chapter.

Example 34.4. Simulation of PDD  control. The presence of derivative action in
a control algorithm, such as PID control, gives some difficulty in the writing of a
program for digital computer simulation. Consider the PID control of a first-order
system as shown in Fig. 34.10. To obtain a set of first-order differential equations
for use with the Runge-Kutta method, we proceed as foIlows.  Prom the controller
block, we obtain

= $(r,r,s2 + 71s  + 1) (34.42)

Cross-multiplying this expression, solving for sM,  and writing the result in the time
domain give

ti = K,i  + (K&)e  + K,Td  Z (34.43)
This expression is not in the form in which the right side is free of derivatives of
the variables. To obtain the correct form, we proceed as follows. Since R = 0 for
this problem, we may write
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LO REM FIRST ORDER SYSTEH  WITH TRANSPORT LAG
15 DIH S(11)
20 DEF FNDY(Y)  = -Y+KC-KC*X
30 KC=8.399999
r(o Y = 0
50  T = 0
bU DT=.02
70 FOR I = L TO LZ
80 S(I)  = 0
90 NEXT I
100  PRINT "T","Y","X"
LLO  X=S(LL)
L20  lZL=FNDY(Y)*DT
I,30  K2=FNDY(Y+.S*KZ)*DT
140  K3=FNDY(Y+.S*KZ)*DT
l&O  K't=FNDY(Y+K3)*DT
Lb0  Y=Y+(KL+Z*KZ+Z*K3+K’I)/b
170  T=T+DT
1tSO  PRINT USING "#.### ";T,Y,X  *'
la90 K-LO
200 FOR I = L TO-20
2LiJ S(K+L)=S(K)
220 K=K-L
230 REXT  I
2r(o  S(L)=Y
250  IF T > la.001  THEN END
2b0  GOT0 LLLl
270 END

FIGURE 34-9
BASIC computer program for control of a first-order system with transport lag (Example 34.3).

From Fig. 34.10, we may write

e  =  -y (34.44)
2  = -j (34.45)

2  = -9 (34.46)

Y(s) = --&[M(s)  + U(s)1

In the time domain, this equation becomes

j = (lh)[u(t)  + m - y] (34.47)

where U(S)  = l/s has been written as u(t)  (a unit step) in the time domain. Taking
the derivative of both sides of Eq. (34.47) gives

y = (l/T)[c?(f)  + rit - j] (34.48)

where use has been made of the fact that the derivative of a unit-step function is a
unit-impulse function (see Chap. 4). Combining Eqs. (34.44),  (34.45), and (34.46)
with Eqs.  (34.47) and (34.48) gives



TABLE 34.3
Computer output for control of first-order system with transport lag
(Example 34.3)

T Y
0 . 0 2 0 0.166
0.0110 0 . 3 2 7
o.ol¶o 0.489
0 . 0 8 0 O.b’ib
0.L00 0.799
o.lJ20 0.950
0 . 1 4 0 ll.097
O.llbO L.242
o.lll?lo L.38’i
0 . 2 0 0 I l .523
0 . 2 2 0 L.b59
0.2r10 1.765
0 . 2 6 0 L.B’lL
0 . 2 8 0 1.890
0 . 3 0 0 ll.sLL
0 . 3 2 0 L.907
0.340 la.877
0.3bO L.821r
0 . 3 8 0 L.7’+8
o.r100 1.649
o.lrzo la.530
0.11110 I l .390
O.‘ibO Il .235
O.‘fBO 1.07ll
0 . 5 0 0 0.9OL
0 . 5 2 0 0 . 7 3 2
0.540 0.5b7
O.SbO 0 . 4 1 0
0 . 5 8 0 0.2brl
O-b00 0.135
0 . 6 2 0 0 . 0 2 4
0.6110 -.Ob4
0.660 -.L28
O.b80 -.I65
0 . 7 0 0 -.L73
0 . 7 2 0 -.lJ53
0.7YO -.LOb
0.7bO -.03ll
0 . 7 8 0 O.Ob7
0 . 8 0 0 0.188
0 . 8 2 0 0 . 3 2 9
0 . 8 4 0 O.ltBI,
0.8bO O.b52
0 . 8 8 0 0 . 8 2 7
0 . 7 0 0 Il.0011
0 . 9 2 0 L.ll77
0 . 9 9 0 L.3’+8
0.9bO Il .505
0 . 9 8 0 l.br17
1 . 0 0 0 L.7b=l
I l .020 It.869

X
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
0 . 0 0 0
O.Lbb
0.329
0.489
O.b’ib
0 . 7 9 9
0 . 9 5 0
I l .077
I l .242
1.38’4
l t .523
lo.659
L.7b5
L.B’iL
1.890
L.7Lz
la.907
I.877
It.824
L.7’+8
2.649
It.530
1 . 3 9 0
I l .235
I l .071
0.7OL
0 . 7 3 2
0.5b7
o.rllto
0.2b’t
o.ll35
0 . 0 2 4
-.Obr(
-.L28
-.Lb5
-.ll73
-.lJ53
-.LOb
-.031
O.Ob7
O.ll88

530
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FIGURE 34-10
PID control of a first-order process (Example 34.4).

t = -j, = -(l/~)[u(t)  + m - y] (34.49)

Z = -ji = -(lh){S(t)  +  rh - (lh)[u(t)  + m - y]} (34.50)

Substituting the expressions fore, .G, and 2  from Eqs. (34.44),  (34.49), and (34.50)
into Eq. (34.43) gives after simplification

rir  = c[-Tdd(t)  + A + By + Am]

where A = Td  -,r

B=y?t-~~
71

(34.51)

The right side of Eq.  (34.51) contains the forcing term -Cr&(t). If Eq. (34.51)
were  integrated, this term would contribute a constant value of -Crdr.  The reason
for this is that the integration of a unit impulse is a unit step, thus

I

r
G(t)& = u(t) = 1

0

We may now write Eq. (34.51) in the form

with
riz  =  C ( A + B y + A m )

m(o)  = -cT?d  = -Kc7,f(T  + Kcrd)

The differential equations to be solved by the Runge-Kutta method now can be
summarized

with

j = (l/r)(l + m - y) (34.52)

rh  = CA+CBy+CAm (34.53)

Y(O) = 0

m(o)  = -(K&)/(T  + &?d)
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Solving Eqs.  (34.52) and (34.53) with  the  initial conditions given will produce a
response for the control system of Fig. 34.10. The  procedure for programming Eqs.
(34.52) and (34.53) by use of the  Runge-Kutta  method is straightforward and will
not be done here.

SIMULATION SOFTWARE
In the first part of this chapter, we have seen how one can write a digital computer
program for the solution of a control problem. Even for the simple examples
presented, there is considerable work in writing and debugging the program.
A number of software programs have been written to solve dynamic problems,
including process control problems. One of the earliest was CSMP developed
by IBM. More recent programs include ACSL, TUTSIM, Simnon, and CC. The
sources of these simulation programs are given in the list of references at the end
of the chapter. Some of these programs provide blocks that simulate the basic
transfer functions of process control such as integrator, first-order, second-order,
lead-lag, and transport lag.

TUTSIM Simulation
One of these simulation programs to be discussed here is TUTSIM, which is
distributed in North America by ‘lbtsim Products (formerly Applied i) in Palo
Alto, California. This program provides about eighty blocks, such as summer,
integrator, gain, and transport lag. The use of this software is similar to the use
of the analog computer in that computing blocks are selected and connected to
one another in a manner similar to the connecting of analog computing elements
by wires. The connection of the blocks, which is done with computer code in the
software, is sometimes referred to as “softwiring.” For the purpose of illustrating
the solution of control problems by simulation software, only a few of the many
blocks available in TUTSIM will be considered. A complete manual on TUTSIM
is available from the distributor. (See references at the end of this chapter.) For use
in our first example, the following TUTSIM blocks will be described: Summer,
Integrator, Gain, and Pulse.

SUM. The summer block, designated as SUM, is shown in Fig. 34.11~.
The output U is the sum of the inputs. The sign of the inputs can be designated
as plus or minus.

INT. One of two types of integrator blocks available in TUTSIM, designated
as INT, is shown in Fig. 34.11b.  For this block, the output U is the sum of the
inputs integrated with respect to the independent variable t. The initial condition
of U, designated as lc, is a parameter that may be assigned. The inputs can be
labeled plus or minus.

GAL The gain block, designated as GAI, is shown in Fig. 34.1 lc. This
block multiplies the sum of inputs by a gain P. The inputs can be labeled plus or
minus.
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u

lJ=PZI,

(cl

II,=  ”lnltlal  cond i t i on

u

U= J&dt  +lc

I, = U(O)

(b)

Parameters :
Ti  = Start time
T2  =  End t ime
P = Pulse amolitude

r--LPLS U

“i-n
0 Tl T2  t

(4
FIGURE 34-11
Some TUTSIM blocks: (a) Summer, (b) Integrator, (c) Gain, (6)  Pulse.

PLS. The pulse function block, designated as PLS, is shown in Fig. 34.1 Id.
This block provides a pulse of magnitude P starting at Tr  and ending at T2. If
TI is taken as 0.0 and T2 is equal to or greater than the length of the run, one
obtains a step function of magnitude P.

In the next example, we shall learn how one uses the TUTSIM blocks to
solve a control problem.

Example 34.5. Simulation of proportional control with TUTSIM. Consider the
control system shown in Fig. 34.12. To simulate this system by TUTSIM, we shall
use the blocks shown in Fig. 34.11. To simulate the first-order lag, we first write

Y(s) 1-=-
M(s) 7s + 1

’ yf+$-  ’FIGURE  34-12
Block diagram for control system of Ex-

K,=2,  2=2 ample 34.5.
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Gain = 1 I,  = 0

I” I

diagram for a first-order sys-

Cross-multiplication of this expression and solving for sY(s)  gives

-Y(s) + M(s)sY(s)  = - -
7 7

The equivalent expression in the time domain is

j,=-li+!E
7 7

(34.54)

We can obtain a TUTSIM diagram for this equation by using a gain block and an
integrator block as shown in Fig. 34.13. In this figure, the gain block multiplies
m by UT and (-y) by UT. The sum of these two signals is then integrated by the
integrator. The operations performed by the software blocks of Fig. 34.13 match
those in Eq. (34.54).

With a block diagram for a first-order lag available (Fig. 34.13), we can now
simulate the control system of Fig. 34.12. The result is shown in Fig. 34.14. In
this figure, a gain block, no. 2, combines the function of the comparator and the
proportional controller.

Set-up of model with TUTSIM software. The method for setting up a model with
TUTSIM software is straightforward and the diagram of Fig. 34.12 will be used
to illustrate the setup. After translating the control problem of Fig. 34.12 into a
TUTSIM simulation diagram of Fig. 34.14, one enters into the computer through
keyboard commands the following blocks of data:

Model structure

Model parameters
Plotblocks and ranges

Timing data

Each block of data will be described below in terms of Fig. 34.14.

Model structure. The model structure lists the types of computing blocks needed
to solve the problem; a number is assigned arbitrarily to each block. The sources to
the input of each block, with appropriate sign, are also listed. The format for the
model structure data is

Format : Block number, Type,  input 1, input2, . . .
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FIGURE 34-14
TUTSIM block diagram for Example 34.5.
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For Fig. 34.14, the data to be entered into the computer are

1, PLS (Block 1 is a pulse generator, there are no inputs)

2, GAI, 1, - 4 (Block 2 is a gain block, inputs are from blocks 1 and -4 )
3, GAI, 2, - 4 (Block 3 is a gain block, inputs are from blocks 2 and -4 )
4, INT, 3 (Block 4 is an integrator, input is from block 3)

Model parameters. The model parameters for each block to be entered into the
computer are entered with the following format.

Format : Block Number, parameter 1, parameter 2, . . .

The number of parameters entered depends on the specific block. For Fig. 34.14,
the parameter data take the form

1,0.0,3.0,1.0 (The pulse starts at 0, ends at 3.0, and is of magnitude 1.0)
2, 2.0 (The gain is 2.0)
3, 0.5 (The gain is 0.5)

4, 0.0 (The initial condition on the integrator is 0)

Plotblocks and ranges. In TUTSIM, one can plot up to four dependent variables,
designated as Yl, Y2, Y3, and Y4, with a range specified for each variable. These
variables appear on the vertical axis of the plot. One must also select the independent
variable (usually time) on the horizontal axis, designated as HORIZ. Block 0 is
reserved for a block that produces time. The choice of the variables and ranges is
determined by the programmer. The format for this data is

Format : Block number, minimum, maximum

For Fig. 34.14, the following choices are made

HORIZ: 0, 0.0, 3.0 (Run varies from t = 0 to t = 3.0)
Yl: 4, 0.0, 1.0 (Yl represents output from block 4; range is from

oto 1)
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.
Y2: (Y2 not used)

Y3: (Y3 not used)
Y4: (Y4 not used)

Outputs Y2, Y3, and Y4 were not used in this example.

liming Data. The timing data selects the step size and the length of the run, the
format is

Format : Delta time, Final time

The step size of delta time must be chosen to fit the nature of the transient. The
simulation starts at t = 0.0 and ends when t is equal to the final time. The ratio
of final time/delta time determines the number of steps taken in the calculation and
determines the number of points plotted. If this ratio is too small, numerical insta-
bility may occur because of inexact integrations. The TUTSIM manual recommends
a ratio that is in the range of 500 to 5000.

A summary of the data used in setting up the model can be listed by keyboard
command. For the system under consideration, this summary is shown in Fig. 34.15.

After the model is set up, it can be exercised by simple keyboard commands
to produce numerical output and plots. The results for Fig. 34.14 using the data
chosen is shown in Table 34.4 and Fig. 34.16.

After the model is set up, one can change easily the structure, the parameters,
the choice of plots, and the timing by keyboard commands.

Model  F i l e :  PCON.SIM
Date : 2 / 2b / 1989
Time: LO : 24
Timing: o.oolJoooo ,DELTA  ; (r.0000 ,RANGE
PlotBlocks  and  Sca les :
Format:

BlockNo, Plot-UINimum, Plot-MAXimum; Comment
Aorz: 0 I 0.0000 , 3.0000 ; Time

PL: g  I 0.0000 , L.0000  ;
Y2: I I ;
Y3: I I ,
Y4: I I ;

0.0000
3.0000
ll.0000
2.0000
0.5000000
0.0000

II PLS

2 GA1 II -Y
3 GA1 2 -4
'i INT 3

FIGURE 34-15
Summary of TUTSIM model for Example 34.5.
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TABLE 34.4
Numerical output for Example 34.5, using TUTSIM

Moael  File: PCON.SIH
Date: 2 / 2b  / L=lM
Time: 10 : 25
Timing: O.OOLOOOO ,DELTA  ; 4.000 ,RANGE
PlotBlocks  and  Scales:
Format:

BlockNo, Plot-HINimum, Plot-HAXimua; Comment
Eorz: 0 I 0.0000 , 3 .uooil ; Time

Yl: 9 I 0.0000 , ll .uooo ,
Pi?: I , ;
Y3: I # ;
Y4: I I ;

0.0000 0.0000
0.20D0 II.1723880
O.Wllfl 0.3rJO?920
O.b000 0.395b200
0.8000 'O.'+b58700
b .uooo 0.5lt79L30
L.2000 O.S5b(lb7Cl
l#.YOOO 0.5850290
L.bOOO O.bObLBBO
ll.8000 O.b2LBb30
2.0000 0.6334750
2.2000 O.b'+20780
2.4000 O.b(18h5LO
2.5999 0.6533720
2.7999 O.b5bb700
2.9999 0.6592630

(YTHER  TUTSIM BLOCKS. The TUTSIM software can solve far more com-
plicated systems than the one shown in Fig. 34.14. Many of the computer
blocks were developed specifically for process control calculations, such as
blocks that simulate a first-order lag, a second-order lag, a transport lag, a
lead-lag transfer function, and a PID controller. There are also blocks (referred

0.8

0.6
h

0.4

FIGURE 34-16
Plot of response from TUTSIM model for Example
34.5.
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to as Z blocks) that are used to simulate sampled-data systems. There are also
thermodynamic property blocks that provide the thermodynamic properties (en-
thalpy, te’mperature,  heat capacity, etc.) of air, steam, and other substances. To
comprehend the full range of the TUTSIM software, one should have access to
the TUTSIM user’s manual.

SUMMARY
Obtaining the response of a control system analytically can be very difficult, if not
impossible, for high-order systems or for systems containing nonlinearities and
transport lags. To study the effect of control strategies and controller parameters
on the response of a complex control system, one must often use a computer
simulation. Fortunately, we have today a number of simulation software packages
for obtaining the response of control systems. The Appendix lists some of these
software packages, along with their features and sources. If one does not have
such simulation software, it is necessary to write one’s own computer program.
Even if one has such simulation software, it is still instructive to learn how to
write some computer programs for the purpose of understanding the problems and
limitations associated with commercially available simulation software. Examples
of such problems are selecting the step size of the independent variable (At),
establishing initial conditions, and providing sufficient storage for the simulation
of transport lag.

In the first part of this chapter, the methods for writing computer programs
were presented by means of four examples of control system. A computer routine
for integration is at the center of any computer program for dynamic simulation.
The fourth-order Runge-Kutta method was selected because of its accuracy and
wide use. The literature on numerical analysis, of course, covers many other
methods of integration, some of which are needed for difficult cases. The first
step in obtaining a computer simulation based on numerical methods is to reduce
the block diagram containing the transfer functions of the components to a set of
first-order differential equations. This step is equivalent to obtaining a state-space
model of the control system (see Chap. 28). Since the Runge-Kutta method is a
marching solution, which starts at time zero and moves one time step with each
cycle of computation, the selection of initial conditions must be considered. In
some cases, the initial conditions are obvious, in other cases (e.g., the presence
of derivative action in a controller), selection of the initial conditions are more
subtle. The simulation of a transport lag is of great importance in the simulation
of control systems. In the example involving a transport lag, a simple method
using a stack (an array of computer storage locations) was used and it was shown
that the size of the stack depends on the ratio of the transport lag to the step size
(r,lAt).

In the second part of this chapter, the use of commercially available software
for solving control problems was discussed. The program TUTSIM was presented
and applied to some simple control problems. The use of TUTSIM is closely
related to the block diagram of a control system in that a specific computer cal-
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culation block is used for each transfer function in the block diagram. Much of the
other simulation software requires that the model be represented as a state-space
model (i.e., a set of first-order differential equations.)

Since so many commercial simulation software packages for solving control
problems are now being developed and distributed it is impossible to cover all
of them in a book of this type. A listing is given in the appendix; however, the
list is by no means complete and an entry in the list should not be considered as
a recommended product. The field of computer applications changes so rapidly
that the reader must keep abreast of developments in this area through technical
journals and contacts with professional colleagues.

APPENDIX 34A
COMPUTER SOFTWARE

FOR PROCESS CONTROL

Many computer software packages are available for use in solving problems in
process dynamics and control. A short selection of software packages that are
useful for simulation of control systems is listed here. A more extensive list (17
packages) is given in Seborg, Edgar, and Mellichamp (1989). Since software
changes occur frequently in terms of version and cost, the reader is advised to
write to the vendor for the most recent information.

TUTSIM. TUTSIM is a computer simulation program that provides a numerical
and graphic representation of linear or piecewise linear systems. It can also han-
dle nonlinear functions. A problem is solved by constructing a TUTSIM model
consisting of interconnected blocks that match the block diagram of the control
system. The block diagram for the model resembles an analog computer diagram,
but all the computations are done numerically by the digital computer. Once a
TUTSIM model has been created, it is very easy to change its structure and param-
eters. The output on the screen of the monitor can display four process variable
versus time. The blocks for continuous control include the usual ones, such as
first-order, second-order, lead-lag, and transport lag. TUTSIM also provides “Z”
blocks for use in sampled-data systems. TUTSIM, which contains about eighty
different blocks, is available in three versions:

short version, 15 blocks allowed per model, $35
collegiate version, 35 blocks allowed per model, $150
professional version, 999 blocks allowed per model, $500

There are special prices for academic use. A student version is available for
$28.00. TUTSIM was described in detail in this chapter. TUTSIM was adapted
from TWente University of Technology in the Netherlands. TUTSIM is available
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for the IBM-PC computers and their compatibles. Information can be obtained
from:

TUTSIM Products
200 California Avenue, Suite 212

Palo Alto, CA 94306

PROGRAM CC. Program CC is a simulation software package for the analysis and
design of linear control systems. Linear systems are represented in the program by
transfer functions that can be continuous (Laplace  transforms) or sampled-data (Z-
transforms). The linear systems can also be represented by state-space equations.
Approximately sixty commands are available and include transient response, root-
locus plots, frequency analysis (Bode, Nyquist, Nichols), and conversion between
transfer function and state-space systems. CC software is available for the IBM-
PC computers and their compatibles. A student version, which is a subset of a
much larger package, is available at the suggested price of $95.00. Information
on CC can be obtained from:

Systems Technology, Inc.
13766 S. Hawthorne Blvd.

Hawthorne, CA 90250
.

AC%. ACSL (Advanced Continuous Simulation Language) simulates the dy-
namic response of physical systems through the integration of differential equa-
tions. This software is used for very complex systems containing a large number
of independent variables (states). A variety of integration algorithms (Adams-
Moulton, Euler, Runge-Kutta, etc.) can be selected. The software has a discrete
section for simulating sampled-data systems. Many plot commands are available
for displaying the output in a variety of graphical forms. This software is available
at a discount to educational institutions. ACSL is available for mainframe com-
puters and also for IBM-AT computers and their compatibles. Information can be
obtained from:

Mitchell and Gauthier Associates
73 Junction Square Drive

Concord, MA 0 1742-9990

SIMNON. Simnon is a general-purpose software for simulation of linear and non-
linear systems, operating in continuous time or discrete (e.g., sampled-data) time.
Models containing up to three hundred states can be simmated.  The software is
available for a VAX computer or for IBM-AT computers and their compatibles.
The IBM version of the software is available to educational institutions for $350.
This software, which was’ developed in the Department of Automatic Control at
the Lund Institute of Technology in Lund, Sweden, is available in North America
from

Engineering Software Concepts
436 Palo Alto Ave.

PO. Box 66
Palo Alto, CA 94301
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PROBLEMS

34.1. The following differential equation is to be solved by digital computation:

- = 2t  - 1.5y
dt Y(O)  = 0

A portion of a computer program, which uses the Runge-Kutta method, is
shown below:

25 DY (T,Y) = 2*T  - lS*Y
26 DT = 0.1

27 Y = 0.0
28 T = 0.0

29 Kl = DY (T,Y)*DT

30 K2 = DY (T + DT*.5, Y + Kl*S)*DT
31 K3 = DY (T + DT*.5, Y + K2*.5)*DT

32 K4 = DY (T + DT*.5,  Y + K3*.5)*DT
33 Y = Y + (Kl + 2*K2  + 2*K3  + K4)*DT/6

34T=T+AT
35 PRINT T,Y

36 IF (T.LT.2.) GO TO 28
37 STOP

38 END

(a) Indicate any errors you find in this program by noting the statement number of
the line where it appears; also describe the error and correct it if you can.

(b) Do one cycle of calculation by hand using the Runge-Kutta method and obtain
the value of K1,  K2, K3, and K4 for use in getting Y at t = 0.1.

(c) Also obtain Y at I = 0.1 by using the Runge-Kutta method.
34.2. The control system shown in Fig. P34.2 is to be simulated by digital computation.

A portion of a computer program, which uses the Runge-Kutta method, is
shown below.

24 DY (T,Y) = (1 + KC)*DT - KC*Y

25 KC = 2.0
26 DT = 0.1

27 Y = 1.0

28 T = 0.0
29 Kl = DY(T,Y)*DT

30 K2 = DY(T + DT, Y + Kl)*DT
31 K3 = DY(T + DT*.5,  Y + K2*.5)*DT

32 K4 = DY(T + DT*.S,  Y + K3*.5)*DT
33 Y = Y + (Kl + 2*K2  + 2*K3+K4)*DT
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FIGURE P34-2

34 T = T +AT

3 5 PRINT T,Y

36 IF (T.LT.2.) GO T O 27

3 7 STOP

3 8 E N D

(a) Indicate any errors you find in this program by noting the statement number of
the line where it appears; also describe the error and correct it it you can.

(b) After correcting the program, do one cycle of calculation by hand using the
Runge-Kutta method and obtain the value of Kl, K2, K3, and K4 for use in
getting Y at t = 0.1.

34.3. The step response of the following differential equation is to be-obtained numerically
with the aid of a digital computer.

2
$$+0.8$+y  = 1

dyldt = 0 and y = 0 at t = 0
Integration step sizes (At) of 0.1, 0.5, and 1.0 are to be used.
(a) Which of the step sizes will give a numerical solution closest to the analytical

solution?
(b) Which step size will require the least computation time?
(c) If it is possible to get an impulse response for the above differential equation,

show how you would provide for it in solving the differential equation by the
computer.

34.4. Write a computer program in BASIC to simulate the response of the PID control
system of Example 34.4 for a unit-step change in load (U = l/s) for the case of
K, = 2.0, q  = 1,  Td  = 1,  and T = 2.



CHAPTER

35
MICROPROCESSOR-BASED

CONTROLLERS
AND DISTRIBUTED

CONTROL

In this chapter, some of the highlights of modern industrial microprocessor-based
controllers and distributed control systems will be presented. A microprocessor-
based controller is essentially a digital computer programmed to perform the func-
tion of a process controller. For our purpose, the term microprocessor is synony-
mous with computer and we could refer to a microprocessor-based controller as
a computer-based controller. The number of features of these modern controllers
is far too great to cover in one chapter. The best way for the reader to acquire
some experience with modern controllers is through laboratory and plant use and
by attending some of the short courses offered by the major suppliers of the
equipment.

HISTORICAL RACKGROUND

During the past fifty years tremendous development has occurred in process con-
trol hardware. The three phases of development am pneumatic control, electronic
control, and microprocessor-based control. During the 1940s the predominant
controller was pneumatic, meaning that signals to and from the controller and
within the controller mechanism were air-pressure signals that usually varied from
3 to 15 psig. The development of the high-gain operational electronic amplifier
during the second world war led to the development of the electronic controller
and also the analog computer. The electronic controller mimicked the control
functions of the pneumatic controller. It also provided some improvements, such
as accurate and reproducible control parameter settings and reduction in size of
the instruments. In contrast, the pneumatic controller required frequent calibration
of the knobs used to set the various controller parameters (K,, ~1, rn).  The pneu-

543
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matic controller had interaction among the control modes and had inherent lags
that became significant at high-frequency operation. There were frequent  debates
over the pros and cons of pneumatic and electronic controllers. For example, the
pneumatic controller was rugged, simple to install, and required little mainte-
nance. Only a source of air pressure was needed to operate the controller. There
was initially great concern about the possibility of explosions with the use of
electronic controllers, so the instrument cases for these controllers were purged
with steady streams of air when used in plants producing flammable substances.
The maintenance of electronic controllers also required highly trained technicians.

In the 196Os,  the chemical industry made its first attempt at computer
process control. These control systems used large mainframe computers, for
which the control programs had to be written from scratch. The first attempts at
computer control were met with mixed reactions. In the 197Os,  there appeared on
the market the first generation of digital control hardware, which was based on the
advances in microprocessor-based technology. This equipment was user friendly
and all the software accompanied the hardware. The operator did not face the
problem of writing computer code to implement the control functions; it was only
necessary to learn the instructions needed to configure (set up) the controllers.

JfJARDWARE  COMPONENTS
The hardware requirements for pneumatic, electronic, and microprocessor-based
controls arc shown in Fig. 35.1. In this figure, all of the components are obtained
from a manufacturer of control equipment; several of the components are common
to the three systems. In Fig. 35.1~2,  all the signals are pneumatic (3-15 psig). The
energy needed to operate these pneumatic components is a source of clean, dry
air at a pressure of about 20 psig. The pressure can vary from 20 psig by about
? 10% without adversely affecting the operation of the instruments.

The electronic system shown in Fig. 35. lb requires both electrical and pneu-
matic power to operate the components. A transducer or converter is needed be-
tween the controller and the valve to convert current (4-20 ma) to pressure (3-15
psk) .

The components for a microprocessor-based system are shown in Fig. 35. lc.
In this case, the control algorithm resides as a computer program in the memory of
the computer. The operator communicates with the control system with a keyboard,
a monitor, and a printer. The computer can perform many mom functions than
implementation of the control algorithm as will be discussed later. The recorder
of the pneumatic or electronic system is replaced by a monitor screen on which
the transients are shown.

In a modem controller both analog and digital signals are processed. The
analog signal is the type that represents a continuous variable that varies over
a range of values. The digital signal is a binary signal that can be represented
by two states (on, 08, or logic 1, logic 0, etc.). Examples of analog signals am
the measurement from a temperature transmitter or the signal sent to a valve.
Examples of digital signals are the output to a motor, which causes it to be
on or off, or the output to an alarm light causing it to be on or off. The focus
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FIGURE 35-1
Controller components for (a) pneumatic control, (b) electronic control, (c) microprocessor-based
control.

of this book has been on analog signals that are applicable to continuous control
systems. However, there is an important area of control called batch control, which
is receiving more attention in industry. Batch control, as the name suggests, is the
control of processes that are done in a batch operation. Many examples of batch
processing occur in the pharmaceutical industry where small amounts of products
of high unit cost are produced.

TASKS OF A MICROPROCESSOR-BASED
CONTROLLER
The primary task of a microprocessor-based controller is implementation of a
control algorithm; however, the presence of a computer makes it possible to assign
a number of peripheral tasks that are useful in process control. Some of these tasks
provided in a modem control system are to:

Implement classical and advanced control algorithms
F’rovide  static and dynamic displays on the monitor
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Provide process and diagnostic alarms
Provide mathematical functions
Provide data acquisition and storage (archiving)

The software to support all of these tasks is supplied by the manufacturer
of the control equipment. We shall now look briefly at the nature of each task.

Implementation of Control Algorithms
The portion of the software that covers this task is organized into large numbers
of blocks that can be connected together to solve a specific control problem. A
partial listing of the blocks typically provided are as follows:

analog input
analog output
conventional control algorithms (P PI, PD, PID)
linearization
lead lag
dead time
self-tuning

There are many other blocks that have been omitted from this list because
of the limitation of space in this chapter. There are also a number of blocks that
process digital (or logic) signals (on/off) such as comparators, selectors, or timers,
which are needed in batch control and automatic plant start-up and shut down.

ANALOG INPUT BLOCK. The ai!alog  input block is an analog-to-digital device
that converts a continuous signal from a transducer, which is in the form of a
current or voltage, to a digital signal that can be used in the microprocessor.

ANALOG OUTPUT BLOCK. The analog output block reverses the operation of
the analog input block by converting a digital signal, which has been computed in
the microprocessor, to a voltage or a current that can be sent out to a transducer
in the process in the field. Sometimes this block is called a field output block.

CONTROL BLOCK. The control block is a block for which many parameters
can be specified. The manufacturer does not give any information on the method
of implementing the control algorithms; however, the reader who has read the
section of Chap. 27 on the design of conventional control algorithms [D(z)]  will
have some idea on how the signals are manipulated within the microprocessor
to implement the desired control action. The sampling period T is one parameter
that cannot be adjusted in a commercial controller; it is fixed by the developer of
the software. In most of the operating manuals provided with the control equip-
ment, the sampling time may not be mentioned. Typical values of T in commercial
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controllers vary from 0.1 to 0.25 sec. A controller operating with such a small
T can be considered as a continuous controller for many chemical processes with
large time constants. Parameters that can be selected are the controller parameters
(K,, 71, ro), limits on set point and controller output, and others.

LINEARIZATION BLOCK. The linearization block is used to “straighten out” a
nonlinear relation. The most common example of the need for this block is in
processing a signal from an orifice plate used to measure flow. The signal (pressure)
across an orifice plate is proportional to the square of the flow. To obtain a linear
relation between flow rate and signal, the signal is sent through a linearization
block, which has been configured to extract the square root of the input signal.
The linearization block can also be configured to linearize any nonlinear relation
that can be plotted on a coordinate system. This aspect of the linearization block
can be useful for linearizing the input-output relation to a valve that is nonlinear
in behavior. In Chap. 20, an equal percentage valve was proposed as a device
to linearize the relation between flow and valve-top pressure when line loss was
large.

LEAD-LAG BLOCK. The lead-lag block simulates the lead-lag transfer function,
K(Tls  + l)l(Tzs + 1). The parameters K, TI,  and T2  can be selected over a wide
range of values. If one needs a first-order lag, T1  can be set to zero. We have
seen the need for the lead-lag block in feedforward control in Chap. 18.

DEAD-TIME BLOCK. The dead-time block simulates dead time (or transport
lag), e-Q’.  For this block, rd can be selected over a wide range of values. We
have seen the need for this block in the Smith predictor control algorithm of Chap.
18. The nature of the computer program needed to simulate the dead-time block
was presented as an example in Chap. 34.

Figure 35.2 shows a simple flow example using some of the blocks just
described. The blocks are connected together by computer code at a keyboard
during the configuration of the control system. This connection of blocks is called
sofnviring  since it is done through the use of computer software. The actual con-
nection between the flow transmitter and the analog input block in the controller,
which is made with wires, is called hardwiring.

SELF-TUNE BLOCK. For years, one of the goals of control engineers has been
to develop a device that would automatically tune a controller, on-line, while
the process is operating. Until recently, this goal was reached for some special
cases by the application of adaptive control theory, a branch of control that is
beyond the scope of this book. Recently (mid-1980s) a commercial device be-
came available that uses the normal transients occurring in a controlled process
(caused by set-point and load upsets) to update the control parameters of a PID
controller. This device is called a self-tuner and is one of the blocks available in
the microprocessor-based controller of several hardware manufacturers. When the
self-tuner is first applied to a process for which no process identification has been
performed, the self-tuner is placed in the pie-tune phase, during which time the
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process is subjected to a pulse while it is operated open-loop. The introduction of
the pulse and the analysis of the transient is done automatically by the self-tuner.
The outcome of the pre-tune phase of operation is the selection of controller pa-
rameters. A conceivable approach to the development of the pre-tune phase of a
self-tuner is to monitor an open-loop step response and apply a tuning method
similar to the Cohen-Coon tuning method of Chap. 19. After the pre-tune phase,
the control system is returned to closed-loop and the self-tuner continues to mon-
itor the transients and make changes in controller parameters when needed. The
self-tuning that occurs during closed-loop operation is based on the characteris-
tics of the transients, such as decay ratio, overshoot, period of oscillation, etc.
The self-tuning algorithm, being proprietary information, is described in only a
general manner in the reference manual that accompanies the control equipment.
Since many industrial processes are poorly tuned, the general-purpose self-tuner
represents an impressive achievement in the application of a digital computer to
control technology. The reader may consult the paper by Krause and Myron (1984)
to obtain more information on the development of the EXACT self-tuner of the
Foxboro Co. The term EXACT stands for expert automatic control tuning and
suggests that the method of tuning is based on a branch of artificial intelligence
known as “expert system” design.

Displays
The software in a modem controller has made the strip chart recorder almost
unnecessary. Through the use of skilled programming, the transients (or trends)
produced in a control system can be displayed on a monitor screen dynamicaIly.
As time progresses, the values of seIected  variables are displayed as a function
of time. The segment of time shown on the screen can be selected to be a few
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minutes to a few hours to show dynamic detail or long-term trends. Transients
that occurred in the past can be stored and displayed again.

Many process operators are more comfortable with control instruments that
have a faceplate which shows bar graphs or pointers indicating set point, control
variable, and output to the valve. In the older instruments, those indicators were
obtained by use of mechanical motion or other means. The software provided with
a microprocessor-based controller can be used to obtain a dynamic display on the
screen that mimics the faceplates of traditional instruments.

Alarms
An extensive amount of the software in modem controllers is devoted to detecting
and reporting a problem in the form of an alarm. The alarm takes the form of a
visual signal (flashing light), an audible signal (beeping horn), or the actuation of
a switch. Examples of the use of switch closures include turning on or off a pump
motor or opening or shutting a valve. The alarms are classified as process alarms
and diagnostic alarms. The diagnostic alarm detects a malfunction in the control
equipment or the loss of communication. For example, if a wire connecting the
output of a temperature transmitter to an analog input block breaks, a diagnostic
alarm would go off indicating that the signal to the analog input block is out of
range. The manufacturer of the control equipment provides all the software for
detecting the problems that trigger diagnostic alarms.

The engineer who configures the control blocks selects the variables that arc
to trigger process alarms and specifies the alarm limits and the type of annunciation
(flashing light, beeping horn, etc.) The alarms can be assigned a priority rating.
Those variables in a process that are most critical arc given the highest priority;
less critical variables are given a lower priority.

Mathematical Functions
The software provides basic mathematical functions such as summation, subtrac-
tion, multiplication, and accumulation (i.e., integration). These functions can
be used along with other blocks in the design of a control system. A simple
example of these functions is the calculation of mass flow rate of a gas from mea-
surements of velocity, pressure, and temperature. These three measurements are
combined according to the following relationship, which is based on the ideal gas
law:

w  =  vAPMIRT
where w = the mass flow rate, mass/time

v = the velocity
P = pressure
T = absolute temperature

A4 = molecular weight of the gas
R = the gas constant
A = cross-sectional area for flow
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The signal from the math block that represents w can then be sent as the control
variable to a control block that controls the mass flow of gas.

Data Acquisition and Storage
Long-term storage of the transients can be obtained easily with a digital computer.
This task is referred to as archiving. The automatic storage of critical process-
control variables on disk or tape can be retrieved later to explain process operating
difficulties. The computer can also be used to automatically record or log the type
and location of an alarm, the time of a process alarm, the time of acknowledgment
of an alarm, and the time it was cleared by operator intervention: this information
is useful to supervisors in detecting violation of safety regulations or process
malfunctions.

SPECIAL FEATURES
OF MICROPROCESSOR-BASED
CONTROLLERS
In addition to the tasks just described, there are three special features available in
modern microprocessor-based controllers that deserve attention. These are limit-
ing, tracking, and anti-reset windup. Each will be discussed separately.

Limiting
In configuring a control system from basic control blocks, one can select lower
and upper limits on controller output and set point. These limits are narrower
than the limits inherently present in the hardware. Limits are often placed on a
controller output for safety reasons or to protect equipment. For example, if one
knows the flow rate of a liquid that causes a tank to overflow,  one can set the limit
on the output of a controller at a value less than the value that causes overflow.
The limits on the controller output are active when the controller is in either
automatic or manual mode. An example of a limit on set point is the selection of
an upper limit on pressure for a steam-heated sterilizer to prevent damage to the
equipment.

Tracking
A very useful feature of a microprocessor-based controller is tracking. Although
tracking is not needed to successfully control a system, its presence is of great con-
venience to the process operator. Two examples of tracking are set-point tracking
and controller-output tracking.

Set-point tracking is useful when a controller is transferred from manual to
automatic. When a process is started up for the first time, a common procedure is
to bring the process on-stream in manual mode. In this case the operator adjusts the
output of the controller (which goes to the valve) until the process variable comes
to a desired steady state. When the tracking feature is not present in the controller,
the set point must be manually adjusted until it equals the process variable before
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the controller is transferred to automatic; the process then continues running in
a smooth manner. If the operator adjusts the set point to the process variable
after switching to automatic, there may be a temporary disturbance in the process
variable. The expression for the disturbance is called a “bump.” With set-point
tracking, the operator does not need to think about adjusting the set point to
the process variable, because it is done automatically. In other words, set-point
tracking provides “bumpless” transfer when switching from manual to automatic.

A second example of tracking can be seen in its use for transferring a
cascade system from manual to automatic. (The reader should be familiar with the
information on cascade control provided in Chap. 18 to understand this example.)
To explain the use of tracking in cascade control, reference to Figs. 18.lb  and
18.2b  will be made. In starting up this system, the primary controller is placed in
a stand-by condition and the secondary controller is placed in manual mode. The
means for accomplishing this is built into the software of the controller. With the
secondary controller in manual mode, its output is adjusted until the temperature
of the tank contents (TO)  is at the desired value. Then, with the control system at
steady state and TO  at the desired value, the system is transferred to cascade mode
by placing both controllers in automatic. Since the output of the primary controller
adjusts the set point of the secondary controller, it is necessary to have the output
of the primary controller equal to the jacket temperature (7’j) when the system is
transferred to cascade mode. This goal can be achieved by having the output of
the primary controller track the jacket temperature while the secondary controller
is used in manual mode to adjust the tank temperature to the desired value. For
this example, the set point of the primary controller can also automatically track
the tank temperature (TO)  before the transfer to cascade mode occurs. In this
cascade control example, we have seen tracking used for both the set-point and
the controller output.

Anti-Reset Windup
A troublesome problem with a controller having integral action (PI or PID) is the
possible occurrence of reset windup. When the error to a controller remains large
for a long time, the integral action of the controller builds up a large value of
output which often approaches the saturation value of the controller output. This
accumulation of output is called reset windup. When the process variable returns
to the set point, the output of the controller does not immediately return to a
value that will hold the process variable at the set point because the controller
output has built up (or has been wound up) and must be reduced by the presence
of error of opposite sign over some duration of time. Thus the transient for the
control variable exhibits a large overshoot that can persist while the output signal
is being reduced through integral action being applied to the error of reversed
sign.

Reset windup typically occurs during the start-up of a process. To gain some
insight into the cause of reset windup, consider the start-up of the liquid-level pro-
cess shown in Fig. 35.3 in which the level in the third tank is to be controlled
by a PI controller. The valve is linear and saturates at 0 and at 0.5 as shown in



552 COMPuTEp  IN PRcKxss  CONTROL

SUPPlY

@I f- Set point

-I

$

I

y-
--=
--
--

‘1,
WC
m-z
--
--

I-I

0.5 - - - - - -

Bc

0!L
0 4 2 0

input to valve, ma

(b)

Valve Process

1P I  & I - - N - -

(C)
FIGURE 35-3
Plant start-up illustrating reset windup (tanks are initially empty): (a) process, (b)  linear valve with
saturation limits, (c) block diagram  of process.
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Fig. 35.3b.  Upon start-up with the PI controller in automatic mode, the tanks are
empty, and the error (R  - C) is large and positive. The action of the controller on
this error will result in a large output M due to proportional action and a rising
contribution to M due to the integral action. The output of the controller will
be at its saturation value, which is typically about 10% above the top of the 4
to 20 ma scale (i.e., 22 ma). The large saturated value of M will in turn cause
the valve to reach its saturation value, which has been taken as 0.5. During the
initial phase of the operation, the tanks are being filled at the maximum rate of
flow provided by the upper limit of the control valve. During this filling stage
of operation the controller is not exercising any control since the valve is at its
limit. As the level rises toward the set point, the large error that existed at start-up
gradually diminishes toward zero. If only proportional action were present in the
controller, the output of the controller would return quickly to a mid-scale value;
however, because of the integral action, the controller output remains high, at
its saturation value, long after the process variable first reaches the set point. To
reduce the output M, the integral action must be applied to-negative error so that
the integration can Iower the output to mid-scale. This negative error occurs as
a result of the tank level remaining above the set point for some time after the
tank level reaches the set point. Other causes of reset windup and some methods
to prevent it are discussed by Shinskey  (1979).

The control system shown in Fig. 35.3~  was simulated for a start-up transient
with the tanks initially empty; the transient is shown as Curve I in Fig. 35.4.
The large overshoot in tank level after the level reaches the set point is clearly
illustrated. Now that the problem of reset windup has been described, we focus
our attention on how to reduce or eliminate it. The development that follows on
the use of external feedback to eliminate reset windup is based on the work of
Shunta  and Klein (1979).

A feature of microprocessor-based controllers is the availability of external
feedback in the configuration of a PI or PID controller. The block diagram of a
PI controller with external feedback is shown in Fig. 35.5. The output of this
controller is given by

M(t) = K&?(r)  + -
I

e(t)dt  + $ j,‘[F(t)  - M(t)]dt (35.1)
71  0

I  No  external  feedback

dback

FIGURE 35-4
Start-up transients for system in Fig. 35.3 with and

t without external feedback.
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Contro l le r

Set point -+I[-+  M

Cont ro l  var iab le -

FIGURE 35-5
Controller with external feedback for use in anti-reset

where M(t) = controller output
e(t) = error = setpoint  - control variable

F(t) = external feedback signal

If the Laplace  transform of both sides of Eq. (35.1) is taken, the result is

&e(s)M(s) = K,e(s)  + -
ST1 + $w  - M(s)1

If the feedback signal is the controller output, F(s)  = M(s), Eq. (35.2) becomes
the usual transfer function for a PI controller:

M(s) = K,  1 + $ e(s)
i i

The feedback signal F(t) can be any signal available to the microprocessor-based
controller. When F(t) is not equal to M(t), Eq. (35.2) can be solved for M(s) to
give

F(s)M(s) = K,e(s)  + -
71s + 1

A controller following this equation provides a signal consisting of propor-
tional action plus first-order tracking of F(t). If F(t) in Fq. (35.1) is taken as the
output of the valve (or the output signal of the current-to-pressure transducer that
goes to the valve) in our example in Fig. 35.3c,  we have the basis for eliminating
reset windup. During the filling stage of the tank, the feedback signal F(t) will be
constant at the saturation value of the valve output. When the tank level reaches
the set point, the error will be zero and the only contribution from the controller
output will be the tracked signal represented by the second term on the right side
of Eq. (35.4). This value will be less than would be the case if external feedback
were not employed. The overall result is that the controller output is less with the
external feedback at the time the level first equals the set point and the overshoot
is reduced. The transient’ using external feedback is also shown in Fig. 35.4 as
Curve II. Notice that the overshoot is less when external feedback is used. To
emphasize the benefit of external feedback for eliminating reset windup, no limits
were placed on the output of the controller in the simulation of Fig. 35.3. In
practice, there are physical limits on the controller output, and when this is the
case, the reduction of overshoot with the use of external feedback may not be so
pronounced as shown in Fig. 35.4.
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DISTRIBUTED CONTROL
So far we have been concerned in this chapter with the operation of a single
controller. Such a controller is referred to as a stand-alone controller because it
is not communicating with other controllers, but only with the one control loop
of which it is a part. Present-day microcomputer-based control systems have the
capability of communicating with other controllers through a network, which is
called distributed control. Figure 35.6 shows one version of the communication
linkages that are usually present in a distributed control system. Each manufacturer
of distributed control systems has a different way of organizing them.

A distributed control system is intended to be used for a large processing
facility that involves as many as fifty to one hundred loops. Examples include
a refinery, a brewery, a power plant, and the like. In Fig. 35.6, the modules of
control equipment that communicate with each other are as follows.

Control processor (CP)
Applications processor (AP)
Workstation (W!$)
Fieldbus module (FBM)

The first three of these modules communicate with each other through a nodebus
or “data highway,” as it has been called. The fieldbus  modules serve as devices
that interface with transducers and valves in the process.

The control processor contains the blocks described earlier (analog input,
analog output, control, linearization, etc.) that are connected together by soft-
wiring to provide the control algorithm required for each loop. Communication
between the control processor and the process (a distance away) in the field takes
place in the fieldbus  module. l%vo  types of fieldbus  modules are available. One
type provides a set of analog inputs and a set of analog outputs that send to and
receive from the field continuous signals (4-20 ma). The other type of module

Nodebus

CP cp  ------- (-.p AP w s

F B M mf.,,  - - - - - - -  m,,,,

Pr in ter Monitor Keyboard

Process 1
FIGURE 35-6
‘Apical  connections in a distributed control system: CP:  control processor, AP: applications processor,
WS: workstation, FBM: fieldbus  module.
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sends to and receives from the field digital signals that often take the form of
switch-contact closures~

The application processor is a microprocessor (or computer) in which the
programs (or software) are stored for performing the many tasks described earlier
and for managing the communication among modules.

The workstation module is connected to a keyboard, a mouse, a monitor,
and a printer for use by process operators to interact with the system. At the
workstation, the process operator can call up on the screen various displays,
change set points and controller parameters, switch from automatic to manual,
acknowledge alarms, and perform other tasks needed to operate a control system
consisting of many loops. A control system can also be configured as an off-
line task at the workstation. After configuration, the configured control system is
downloaded to the  control processor. If necessary, more than one workstation can
be attached to the nodebus  in order to provide communication at several locations
in a plant. If more than one workstation is used, only one of them should have
the authority at a given time to be in charge of the control system.

SUMMARY
During the past 15 years, the computer has greatly changed the nature of industrial
process control equipment. The microprocessor has become the heart of control
instruments and the computer programs stored in the memory of the  hardware have
provided many functions besides the basic control algorithm. When the pneumatic
controller was the predominant type, one purchased a controller with very specific
attributes (e.g., mode of control, type of measured variable, chart speed, etc.}.
The microprocessor-based control instruments available today contain not only
the conventional control algorithms, but many other functions such as simulation
of basic transfer functions (e.g., lead-lag and transport lag), display-building,
mathematical functions, process and diagnostic alarms and data acquisition. The
modem instruments also provide logic functions (comparators, timers, counters,
etc.) for use in batch control and plant start-up and shutdown. Recently, self-tuning
algorithms have been added to the microprocessor-based instruments.

In this chapter, some of the special features of modem controllers were
discussed (e.g., limiting, tracking, and anti-reset windup). Any controller having
integral action can cause reset windup under certain conditions when the error
persists for a long time. The result of such a phenomenon is a transient that has
large overshoot. Manufacturers of control instruments now offer several methods
for reducing reset windup; the one presented in this chapter was use of external
feedback.

Before computer control appeared, most process loops were served by in-
dividual controllers with signals to and from these controllers being collected on
a large panel board  in a special control room. To obtain communication between
the control room and the controllers required much wiring and piping (for pneu-
matic systems). Today, microprocessor-based control systems have the capability
of communicating with other control instruments through networks, called dis-
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tributed  control,  with  the result that  much  of the hardwiring  used  in the older
systems  is done  within the computer.  Such  internal  computer  connections  am
called softwiring  because  the  connections  are  made  through  software.  A distributed
control  system  can  control  an entire  plant and  involve as many  as one  hundred
or more  control  loops.  Since  each  manufacturer  has  a different  way  of organizing
a distributed control  system,  the practicing  engineer  must  obtain the details of a
particular system  from  the manufacturer.  Most  manufactunxs  offer a variety  of
short  courses  for  technicians  and  engineers  on the installation and  use  of their
hardware  and  softwan~.
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Absorption, dynamics of, 328-333
ACSL simulation software, 540
Adjoint  of matrix, 443
Alarm, process and diagnostic, 549
AmpIitude  ratio, 202
Analog computer, 517
Analog-to-digital converter, 35 1
Attenuation, 59
Autonomous system, definition, 485

Bandwidth, 129
Batch control, 546
Bilinear transformation, 378
Block diagram, 53, 112-113

chemical reactor, 135-141
standard symbols, 143-144

Bode diagram:
asymptotic approximations,

210-212
controllers, 217-218
definition, 209
first-order system, 209-211
graphical rules, 213
second-order system, 213-216
systems in series, 211-212
transportation lag, 205

Bode stability criterion, 227-228
Bumpless  transfer, 288, 551

C,  for valve, 305
Cascade control, 249-256

in valve positioner, 315
CC simulation software, 540
Characteristic equation, 167-168

roots of, 33-35, 167
sampled-data system, 377, 395

Chattering, in on-off control, 497
Chemical reactor, 135-141, 235

phase plane of, 479-483, 500-504
Clamping, 35 1
Closed-loop system, 112
CIosed-loop  transfer functions, 143-149
Cofactor matrix, 442
Cohen-Coon tuning, 288-289
Comparator, 112
Computer control, 405-427, 543-557
Control system response, 151-159
Control valve (see Valve, control)
Controller, 128-133,  545-556

calibration of, 13 1
cascade, 249-256
direct  digital, 405
feedforward, 257-265
internal model, 272-279
microprocessor-based, 543-556
pneumatic versus electronic, 543-544
ratio, 265-267
sampled-data, 405-427
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Controller mechanism, 124-126
Controller modes, choice of, 283-284

motivation for, 132-133
Controller tuning, 282-295

Cohen-Coon process reaction curve,
288-290

comparison of methods, 291-295
Ziegler-Nichols, 233-234, 286-287

Comer frequency, 210
Criteria of control quality, 284-285
Critical damping, 95
Critical points, analysis of, 487492

definition of, 485
Cross-controller, 455
Crossover frequency, 227

Damped oscillator (see Spring-mass-
damper system)

Damping, viscous, 90-92
Dead time (see Transportation lag)
Dead zone, in on-off control, 498-500
Decay ratio, 97
Decibel, 211
Derivative action in control, 131
Derivatives, Laplace  transform of,

16-19
Describing function, 506-5 11

of actual relay, 510
definition of, 510

Determinant of matrix, 442
Deviation variables, 51-52, 115

in distributed parameter systems, 342
Differential equations, 20-21

computer solution, 517-532
Digital-to-analog converter, 35 1
Displays, 548-549
Distance-velocity lag (see Transportation

lag)
Distributed control, 555-556
Distributed-parameter systems, 333-344

Error, 111
EXACT self-tuner, 548
Exponential stage (see First-order

system)
External feedback for anti-reset windup,

553-554

.

Feedback:
negative, 113
positive, 113

Feedforward control, 257-265
Foxboro tuning rules, 262-265

Fieldbus  module, 555-556
Filter in internal model control,

275
Final-value theorem, 37-38
First-order lag, 52

(See also First-order system)
First-order system, 49-53

computer simulation, 533-534
impulse response, 57-58
interacting, 83-86
noninteracting, 80-82
in series arrangement, 80-86
sinusoidal response, 58-61
step response, 55-57
transfer function, 5 i-52

Flow control, 547-548
Focus, 487-490
Forcing function, 22, 52-55
Fourier series, 358-359, 507-509
Frequency response, 20 1-240

Bode diagram, 209-220
(See also Bode diagram)

Bode stability criterion, 227-228
comparison with root locus, 174
in control system design, 224-240
of controllers, 2 17-2 18, 22 1,

236-238
definition, 203
of distributed-parameter systems,

337-338, 343-344
from elliptical phase diagram, 221
experimental determination of,

299-300
gain and phase margins, 228-233
heuristic stability arguments, 208-209,

224-227
Nyquist stability criterion, 227
from pulse test, 300-301
substitution rule, 201-202
of systems, 209-216

in series, 207, 211-213
Ziegler-Nichols settings, 233-234,

286-287
Frequency testing, 299



Gain margin, 228-233
design specifications, 229

Gain-phase plot, 5 11
Gas absorber, dynamics of, 328-333

Harmonic analysis, 506-5 10
Heat conduction, dynamics of, 333-338
Heat exchanger:

dynamics, of counterflow,  339-344
resonance in, 343-344
steam-jacketed kettle, 318-324

Heater, stirred-tank (see Stirred-tank
heater)

Hold
first-order, 375
zero-order, 352-353

Hysteresis in valves, 315

Impulse function, 42, 54
Impulse modulated function, 353
Impulse modulation, 352
Initial-value theorem, 39
Integral, Laplace  transform of, 434
Integral action in control, 130-131
Integral of error criteria:

absolute value of error (WE), 285
square of error (ISE), 285
time-weighted absolute error (I’IAE),

285
Integrator, 5 18, 532-533
Interacting systems, 80-86
Interaction:

in control system, 453-454
in mercury thermometer, 87

Internal model control, 272-278
Inverse of matrix, 442-443
Inversion of Laplace  transforms, 22-33
Isoclines, method of, 485-487

Lag, 61
Laplace  transform, 1344

of integral, 43-44
inversion of, 22-33
table, 17-18
use in partial differential equations,

335-336

Lead-lag transfer function, 547
Liapunov, method of, 491-492
Limit cycle, 315, 492-493

in exothermic chemical reactor,
502

in on-off control, 498, 506-511
Limiting in controller and valve, 550,

551-553
Linearization, 72-75, 321-324

in analysis of critical points, 490
Liquid level, 64-70

computer simulation, 520-525
Load change, 112
Loading, in liquid-level process, 85
Long division, BASIC program,

372-374
Lumped-parameter model, of distance-

velocity lag, 338-339
for mercury thermometer, 50

Manometer, mercury, 105
Matrix, 441-442
Matrix differential equation, 432-433
Minimal prototype response, 408
Minor of matrix, 442
Mixing process, 70-7 1
Modeling, 344
Modified Z-transform, 384-392

table, 356-357
Multiloop system, block diagram

reduction, 148-149
Multiple input-multiple output system

(MIMO), 453
Multivariable control, 453466

decoupling, 46 1
interaction, 453454
stability, 464-466

Natural frequency, 97
Natural period, 97
Negative feedback, 113-114

overall transfer function, 144-148
Node, 488490
Nodebus  in distributed control, 555
Noninteracting control, 458463
Nonlinear systems, 469-505

definition of, 47 1
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Nonminimum phase characFeristics,  275
Nomninimum  phase lag, 338
NyquisF  stability criterion, 227

Qffset,  definition, 153
On-off control, 130

of stirred-tank heater, 493-500
Open-loop transfer function, 167
Overall transfer function, from block

diagram, 144-149
for positive feedback system, I47

Overdamped response, 95
Overshoot, 96

Pade  approximation to transport lag, 103
Partial fractions, 22-33
Pendulum, 476-478

phase plane of, 490-492
Per&k

of oscillation, 97
ultimate, 233

Phase angle, 59, 202
Phase lag, 59
Phase lead, 59
Phase margin, 228-233

design specification, 229
Phase plane, 471-493

graphical methods in, 48M93
Phase space, 471-483
PoIes  and zeros, 178, 182
Positive feedback, 1 l3-114

overah  transfer function, 147
Process dynamics, experimental,

296-301
theoretical, 3 18-345

Process identification, 296-301
semi-log method, 297-298

Process reaction curve, 288
Proportional band, 129
Proportional control, 111
Proportional controller, idea1

transfer function, 128-129
Proportional-derivative control, ideal

transfer function, 131-132
Proportional-integral control, ideal

transfer function, 130-131

Proportional-integral-derivative control,
ideal transfer function, I32

Pulse function:
as approximation to unit impulse,

67-69
response of liquid-level system to,

67-69
P&e  Festing, 300
Pulse transfer function, 360-361

Quadratic lag (see Second-order system)

Ramp function, 15
Ratio control, 265-267
RC circuit, 71-72
Regulator problem, 114
Relay:

actual, harrnonic~anaIysis  of, 506-510
electronic, ideaI,  in on-off control,

493-494
Reset windup, 551-554
Resistance, 64

linear, 64
Resonance, 216

in heat exchanger, 344
Resonant peak, 215-216
Response time, 97
Rise time, 97
Root locus, 177-193

comparison with frequency response,
174

concept, 177-182
plotting of diagrams, 182-184
rules for plotting, for negative

feedback, 184-186
sampled-data system, 380-382

Roots of equation, BASIC program,
193-195

Routh test for stability, 169-171
extensions, 175
in sampled-data systems, 378-379

Saddle point, 487-491
Sampled-data control, 347-428

closed-loop response, 364-366



design methods, 410-415
for first-order with transport lag,

39WQ3
open-loop response, 360-363
performance specifications, 408-409
pulse transfer function, 361
stability, 376-378

Sampling, 349-35 1
fast and slow, 410

Second-order system, 90-101
computer simulation, 520-521
dynamic parameters r and &.  91-92

l impulse respor~se,  98-99
overdamped, graphical calculation of

time constants, 105-106
overdamped, semi-log graphical

method, 297-298
sinusoidal response, 99-101
step response, 92-98
transfer function, 92%

Self-tuner, 547-548
Sensitivity, controller, 128
Servomechanism problem, 114
Set point, definition, 112
Settling time, 415-416
Simnon simulation software, 540
Simulation, computer, 517-539
Simulation software, 532-540
Single input-single output system

(SISO),  453
Spit-tile,  189
Spring-mass-damper system, 90-92

phase plane of, 472-476
Stability, 164-174

Bode criterion, 227-228
conditional, 193
definition, 166
in nonlinear systems, 491-493
in multivariable system, 464-466
Routh test, 169-171
sampled-data control, 376-382

Started function, 353.
State of system, definition, 484-485
State variable, 432-433

selection and types, 436-437
State-space methods, 429-468

transfer function matrix, 449
transition matrix, 447

Steady-state gain, 66
Step function, 15, 53-54
Step testing, 296-299
Stirred-tank heater:

block diagram for contol of,
111-120

closed-loop response of, 151-159
on-off control, 493-494

Substitution rule in frequency response,
201-204

Summer, 532-533
Superposition, 52-53, 47 1
Sutro weir, 64

Taylor-series expansion, 73, 32 1
Thermometer dynamics, 49-52
Time constant, 5 1, 72
Tracking in controller and valve,

550-55  1
Trajectory, definition of, 484
Transducer, 139
Tr;msfer  function, 49, 52-53

for distributed-parameter systems,
335-337, 343

simulation by computer, 532-534
Transfer function matrix, 446-452
Transfer lag, 83
Transform (see Laplace  transform and

Z-transform)
Transition matrix, 447
Translation:

of function, 40
of transform, 39

Transportation lag:
computer simulation, 525-528
as a distributed parameter system,

338-339
Pade  approximation, 102-103
transfer function, 101-102

Tuning rules, 282-295
TUTSIM simulation software,

532-540

Ultimate periodic response, 59
Underdamped response, 93-94
Unity feedback, 152
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Valve, control, 303-316
C”, 305
characteristics, 306-309
construction, 303-305
equal percentage, 308
hysteresis, 315
linear, 308
linearization of, 324-326
logarithmic, 308
positioner, 3 14-3 16
sizing, 305-306
transfer function, 127-128

Vector, column and row, 441

Weir, 64-65

Zero-order hold, 352-353
Zeros and poles, 178-182
Ziegler-Nichols settings, 233-234,

239-240, 286-287
z-transfoml, 354-355

inversion by long division,
362

inversion by partial fractions,
. 363-364

table, 356-357
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